
RoboTeam Twente 2017 Team Description Paper

Ewoud Croll, Rik Freije, Klaas de Haan, Hans van der Heide, Jim Hoekstra,
Boi Okken, Roel Plompen, Bob Rubbens, Rick Timmer, Stefan Tolboom,

Dennis de Weerdt, Iris Weijers, and Wybe Westra

University of Twente, Netherlands
info@roboteamtwente.nl

http://roboteamtwente.nl

Abstract. This paper describes the hardware and software of RoboTeam
Twente, which intends to participate in the RoboCup 2017. The team
was founded in 2016 and hence this is the first attempted qualification
and Team Description Paper. All the basics of the robot will be explained
in detail, as well as some possible improvements not yet implemented by
the other teams.

1 Introduction

With no old hardware and software to start with, the main focus this year
lies on preparing the robots in time for the RoboCup 2017. To not waste any
time, prototype robots from acrylic glass were developed for the qualification.
However, this paper will not focus on these robots but on the final robots which
will be used in the RoboCup, see Fig. 1. Partly thanks to the RoboCup being
open source, a lot has been established the past months. This brought this year’s
team closer to their competitive goal: participating in the RoboCup 2017. While
it may not feature a lot of innovation it does give a lot of detailed information
about the robots. This can hopefully help new teams in the future with building
their first generation robots.

(a) Robot with case (b) Robot without case

Fig. 1: Renders of the complete robot



2 Mechanics

In this section the mechanical design and construction of the robots will be
explained. All individual components will be described one by one. To reduce
weight the majority of the pieces will be made from polyoxymethylene (POM).
This material has half the density of aluminum and is characterized by its high
strength, hardness and stiffness. Most components are manufactured with the
aid of CNC milling and turning machines as well as a laser cutting machine. The
open-source hardware of TIGERs Mannheim1 was used as a guideline for most
of the parts.

2.1 Wheels

General. For the omnidirectional wheels the MRL 2012 design [1] was used as
a base, renders can be found in Fig. 2. The dimensions, however, do differ and
can be found in Table 1. The large amount of small wheels should make for a
smooth ride. The wheel itself and small wheels will be made from POM. The
small axles are made from hardened steel and can turn freely in their chamber,
just like the small wheels can on the axles. This makes the small wheels turn
with very little friction. The EPDM rubber O-rings produce grip for the robots.
The wheel has chambers to remove some weight.

Table 1: Wheel dimensions

Dimensions Values

Diameter [mm] 55
Width [mm] 12.5
Number of wheels 25

(a) Complete wheel (b) Dismantled wheel

Fig. 2: Renders of the wheel

1 https://tigers-mannheim.de/index.php?id=65



Configuration. The configuration of the wheels is chosen based on the width of
the dribbler. The angle between the two front wheels is 120 degrees, just like the
angle between the back wheels. Making these angles different from each other
will result in a loss of forward top speed, which is unwanted.

Gear ratio. The motor actuating the wheels are described in Sect. 3.1. The
final parameter for the acceleration and top speed is the gear ratio. The chosen
requirement is for the robot to be able to reach its top speed within half of the
playing field, or 4.5 m. From this requirement a gear ratio of 2:5 was chosen.
This results in a forward top speed of 5 m/s within 4 m and a decent sideways
acceleration of 2.5 m/s2. The gears are made from PA6 30%GF which makes
them strong and lightweight.

2.2 Dribbler

The dribbler bar has a length of 71 mm and a diameter of 10 mm. The small
diameter gives the ability to dribble ’high up’ on the golfball, without exceeding
the 20% rule. Just like [2], a timing belt is used rather than plain gears. Given
the high amount of rpm the dribbler bar has to make, this seems to be the logical
choice. A T2/90 belt is chosen with timing belt gears with respectively 34 and
13 teeth. More information about the motor used is stated in Sect. 3.1.

For better pass receiving the dribbler is hinged and damped with foam. This
does not help enough when the ball touches the side of the dribbler. For this case
a solution is still to be found, one possibility is the use of high impact damping
foam. A render of the current design is shown in Fig. 3. Two parts are made
transparent to reveal the parts behind them.

Fig. 3: Render of the dribbler



2.3 Kickers

General. Like most teams, a straight kicker and chip kicker are used, both
explained below. More information about the electronics of the kickers can be
found in Sect. 3.5.

Straight Kicker. The straight kicker will not differ from most teams’ design.
Right now modified retail solenoids are used, testing will have to show whether
these suffice. At the moment the kicker shoots straight because of the non-
symmetrical shape of the plunger, which is forced trough a piece of plastic with
the exact same shape. Research will be done into solutions with less friction.

Chip Kicker. The chipper is mounted to the dribble system to cancel out the
influence of the damping action. Without this the ball would have a variable
position relative to the chipper which makes it impossible to shoot consistently.
Instead of using a flat solenoid, two small solenoids are used which fire at the
exact same time. Details on the complete kicker setup can be found in Fig. 4.

Fig. 4: Render of both kickers

2.4 Frame

Inspired by TIGERs Mannheim [3] the motor mount, motor and wheel can be
taken out together as one block to make replacements easier. Unlike TIGERS
Mannheim, a ’middle ring’ is chosen to add some extra stiffness. Yet again, all
components will be produced from POM. A render can be found in Fig. 5.



Fig. 5: Render of the frame

2.5 Case

The case will be split into two parts, one mounted on the middle ring and one at
the top. This makes the case easily manufacturable by vacuum molding, while
still being strong. The mounting will be done with magnets to make for easy
replacements of parts and batteries. Figure 6 shows a render of the case.

(a) Complete case (b) Bottom part

Fig. 6: Renders of the case

3 Electronics

3.1 System Overview

General. The electronics of the robot are configured in a modular way. This
way, a sub-module will be easily replaceable when it fails, even during a match.
Most components are chosen based on being easy to implement or work with.

Currently, the modular system consists of three stackable printed circuit
boards (PCBs); the main controller board, motor controller board, and kicker
board. They will use a common connector for communication buses and power



supplies (excluding high voltage). The subdivision separates the logic from the
power and high voltage electronics. In addition to assuring safety, it also in-
creases reliability and ease of replacement for components that are more likely
to fail, such as motor controller power electronics.

The choice of motors in SSL robots is critical. Due to the lack of space, and
relatively high acceleration rates and speeds, the only realistic option is the use
of a brushless motor. Either the Maxon EC45 flat 30W or 70W variation seems
to be the best choice. Considering this is the first year for RoboTeam Twente,
the 30W was selected for more simplicity. THe 70W variation requires other
driver electronics. For the dribbler the Maxon DCX26L GB SL 12V are used,
the specifications here are less important.

Next to the electronics on the robot, there is a base station connected to the
computer to provide communication between the tactics computer and all robots
on the field. The communication itself is handled with off the shelf available
2.4Ghz transceiver boards. The NRF24L01 was picked for availability, price,
robustness and ease of use.

Design Specifications. To help determine design boundary conditions, general
design specifications were made up and used in the design of sub-modules. These
are shown in Table 2 below. Note that most of these specifications are not fully
fixed and can be changed.

Table 2: General electrical design specifications of the robots/system

Specification Value

Maximum power draw [W] 140
Maximum power draw (per motor) [W] 30
Nominal common (battery) voltage [V] 12
Maximum common (battery) voltage [V] 20
Operating temperature range (ambient) [C] 0 to +60
Wireless communication frequency [GHz] 2.4
Maximum kicker voltage [V] 400
Maximum ball speed [m/s] 8

3.2 Basestation

For the basestation communication, a PCB was developed in which an STM32F3
Discovery board can be plugged in directly. This simplifies board design and
minimizes cost time spent debugging and complexity. The other components used
in the PCB are debug LEDs, switches and four spots for the NRF24 modules.
The communication protocol between the base station and the tactics PC is a
simple acknowledge protocol based on the packet format as described in [4].



3.3 Main Controller Board

Overview The top board of the robot contains the main controller. The main
components making up the main controller board are: an ARM Cortex-M4
STM32F3, an Xsens MTi-100 gyroscope-accelerometer package, a Mach X02
FPGA, a NRF24L01 wireless module, a bus connector that connects to the
other boards, connections to the dribbler, and some debug LEDs/buttons. The
wireless module sets an interrupt pin when it has received instructions from the
basestation and sends these instructions via SPI to the microcontroller. The mi-
crocontroller is in charge of processing commands and acting on them. It controls
the kicker board, the dribbler motor and the ball detection directly. It also cal-
culates the individual rotational velocity setpoints by combining the commands
and the information provided by the inertial navigation MTi unit. That informa-
tion is sent to the FPGA. The FPGA is in charge of controlling the four BLDC
motors simultaneously. It uses velocity control to assure the desired rotational
motor velocities are met. The signals the FPGA produces are fed through to the
motor controller board power electronics via a header stack.

STM32F3 The STM32F3 series is an excellent fit for controlling the robot.
The floating point unit in the chip makes sure that trigonometric and differential
equations can be performed quickly. The flash memory of 64kB ensures that even
the most complex program and code structure can fit easily.

FPGA The FPGA selected for the control and commutation is the Lattice
MachXO2. Microcontrollers were considered for the task, but there are too few
PWM outputs and GPIOs available on almost all microcontroller packages to
control all motors at once. The price of the microcontrollers that do have enough,
are generally just as expensive as an FPGA. Considering this and that the com-
mutation is a task that is inherently well done in hardware, an FPGA was
selected.

Timing requirements are not precise in the robot, so the FPGA can use its
internal oscillator. It features an on-board voltage regulator, thus instead of the
more regular four voltage regulators, the FPGA just uses a single additional
voltage regulator for the core over the standard 3.3V rail for the GPIO. Lastly,
it has flash memory build in, so there is no need for a separate flash configuration
device which takes up board space, and brings extra costs.

Xsens MTi Using an accelerator can improve our control of the robots, this is
later explained in 3.8. The choice for an Xsens MTi for the inertial measurement
unit brings a lot of advantages. The first being the data processing that the MTi-
100 series provides, the data coming from the device can be easily implemented
in a control loop. The communication between the MTi and the microcontroller
is well documented and is easy to implement in code. This makes the timing
critical computational load of the microcontroller minimal.



3.4 Motor Controller Board

Since brushless motors are used, separate power electronics need to be developed
to control the motors. Back EMF sensing will not be effective since the motors
also need to start under load from zero speed. Therefore hall sensors are used to
do the commutation.

The signals coming from the motors are send back to the FPGA on the
main controller board via pin headers. Via the same pin headers, control signals
coming from the FPGA are fed down to the motor drivers. Discrete MOSFETs
with gate drivers are used to maximize flexibility and minimize costs. The set up
is a standard brushless H-bridge with gate drivers that use bootstrap capacitors
to control the high side MOSFETs.

Next to the H-bridge, there is also current measurement capability imple-
mented on the circuit board. This can be used for protection of the motors,
and/or the driver electronics. Each motor also has a single status LED. This can
help in debugging issues in the field. A schematic overview of the motor power
electronics and H-bridge is shown in App. A.

There will still be research done in other areas to see if improvements can
be made. An example of this are to use a separate rotary encoder for speed
input for the PID controller. Another example is the use of a separate small
microcontroller per motor to control it, instead of a single FPGA for all four
brushless motors. This could give improvements in cost, complexity, and features
such as current sensing.

3.5 Kickers Board

Current Design. The kicker board is in charge of boosting the voltage delivered
by the internal batteries. Under normal operation, the 12V from the battery is
boosted to 350V. The design is rated for a maximum of 400V to ensure safety.
This is accomplished using an isolated DC/DC converter. The current version
of the kicker uses a battery separated from the rest of the robot.

The power generated by the kicker board will be used to drive a series of
solenoids, which can kick or chip the ball. Thee current kicker design is based
around a standard boost converter. The isolation is obtained by making use of a
secondary battery for powering the kicker system and controlling the the kicker
via optically isolated inputs. The 34063 IC is used for controlling the boost
converter, this IC has build-in current and voltage limiting by giving a pulse.

Future Design. The design of the kicker will be modified in the future to
facilitate the use of a single battery in the robot without compromising the
electrical isolation barrier between the input and the output of the robot. This
is done by modifying the topology to a flyback converter. The main difference
with the previously described implementation is that the coil is replaced by a
transformer.

Another planned improvement is that the current version of the kicker board
is controlled by the main PCB. The improved version will have a microcontroller



which monitors the state of the kicker, such as input and output voltages, as well
as controlling the output power to the solenoid.

3.6 Ball Detection

Ball detection is yet not implemented. However, this will be used later this year.
Possible solutions can be an infrared (IR) LED and receiver, a laser diode and
photo-transistor or a sonar/IR distance sensor.

3.7 Batteries

The main battery supplies the robot with power. Currently, a three cell LiPo
battery is used, part of its specifications can be found in Table 3. LiPo batteries
have advantages in being lightweight and small, and are generally widely avail-
able for a competitive price. The LiPo Battery has build in protection against
over-(dis)charging and over-voltage protection. There are currently no additional
safety features installed apart from a circuit breaker to prevent catastrophic fail-
ure due to shorts in the robot.

Table 3: Specifications of the batteries used

Specification Value

Maximum charge rate [C] 5
Maximum discharge rate [C] 75
Nominal output voltage [V] 11.1
Maximum power [W] 14.4

3.8 Low Level Control

Motor Speed Controller. The speed controller currently implemented in the
FPGA is done with a relatively simple PI controller. The commutation is also
done in the FPGA for all four motors. The PWM generation to control the
speed is separated from the winding commutation and will only affect the low
side MOSFETs. If the high side MOSFETs do switch often, it will increase losses
and discharges of the bootstrap capacitor.

Robot Position Controller. The robot position controller has two modes.
When the commands to the robot are velocities, the robot calculates the an-
gular velocities from the given velocity vector by means of kinematic matrix
operations. This then gets converted from SI units to units that the FPGA can
use. Lastly, the velocities get put in a package and sent via SPI.

When a position is sent to the robot, the control loop of the microcontroller
gets activated. It now uses the given position as setpoint, the MTi data as the



error and the angular velocities as output. The MTi gives data at regular intervals
to ensure correct information. This way the position can be found precisely. More
information about the MTi can be found in Sect. 3.3.

4 Software

4.1 Software Structure

Overview. The software structure consists of several blocks, each representing
a node which runs in a separate process, see Fig. 7. These nodes are based
on and interconnected by the Robotic Operating System (ROS), which will be
covered later in this section. All the solid arrows represent ROS communication
lines over which the different nodes can post and receive data. At the top of
the diagram, the incoming vision and referee data are filtered and sent to the
tactics block, where this data is kept in memory until the next vision or referee
update. The tactics block itself is separated into four layers; the structure will
be detailed in Sect. 4.3. Once the tactics module has decided what every robot
needs to do, it sends these commands to the RobotHub. This component is
the interface between the tactics PC and the individual robots, managing the
communication between them and performing all low-level transformations of
data. Additionally, the RobotHub can be configured to send data to the GrSim
simulation program [5] instead, which will then feed data to the vision system.
To the tactics module, these two configurations look exactly the same, giving
the ability to test the software in the simulation the same way it would run in
the full system.

Fig. 7: Software structure overview



Use of ROS. As mentioned before, the software makes use of ROS, a flexi-
ble framework for writing robot software. It is a collection of tools, libraries,
and conventions that are meant to simplify the task of creating robust soft-
ware for different robotic applications. ROS is primarily used because of its
built-in communication infrastructure. Within ROS, messages can be sent be-
tween distributed nodes via an asynchronous and anonymous publish-subscribe
mechanism. Messages are sent over ’topics’ with a fixed message type, thereby
enforcing clear interfaces between nodes. The main advantage of using this sys-
tem is that different software modules are detached from one another, and can
easily be adapted or replaced independently. ROS is housed in a ROS Master
process, which acts as a central communication broker. The Master keeps track
of active nodes and subscriptions and provides subsribers with their respective
publishers’ contact information, so that these two nodes can then communicate
independently. The Master also runs a parameter server, which stores and pro-
vides access to shared variables. The actual messages are sent in a binary format
(including a checksum) using the XMLRPC protocol. The transport layer used
is determined at runtime, but usually it is TCPROS, a variant of TCP.

Communication via topics is very effective when the message type, as well as
the sender and receivers, are fixed. However, because skills are fixed functions
but their use within roles can vary, this is not an appropriate infrastructure for
communication between skills (e.g. for synchronization). For this type of commu-
nication, parameters in the ROS parameter server are used. Global parameters
can be set by any node and read at any time by any other node. So when one
robot reaches a certain state, this can be communicated to other robots that
depend on the first robot by changing a ROS parameter. The parameter server
does not offer any atomicity guarantees, but at this time we do not use it in
a way which could cause a race condition. Should that change, we will have to
implement a synchronization mechanism to act as a safeguard.

A key advantage of enforcing clear interfaces between nodes (as ROS does)
is that nodes become interchangeable; as long as two nodes expose the same
interface (by publishing and subscribing to the same set of topics and advertising
the same services) they can occupy the same ’slot’ in our infrastructure. An
example of this is the way in which robot commands are generated: Normally, our
AI node would perform this task, but for testing we can choose to run a keyboard
or gamepad controller instead. These nodes all publish on the ’/robotcommands’
topic, and to any subscribers to that topic, the messages look exactly the same
no matter where they originate from.

Another useful function of ROS is that all messages between nodes can be
easily recorded and played back by using the ’rosbag’ tool, which is distributed as
a part of the ROS suite. Rosbag keeps a record of all messages sent, and allows
the user to play them back in real time at a later date. This means that the
separate software modules can also be tested separately. One software module
can be run and tested on its own, even if it depends on messages from other
modules, by playing back recorded communication from an earlier session. This



feature gives the additional advantage that the pre-recorded messages are well-
known and unchanging over multiple tests, simplifying the debugging process.

4.2 Behavior Trees

In several layers within the strategic architecture, behavior trees are used in order
to determine how the robots should behave. Before explaining the strategy and
tactics some information about these trees is given. Simply put, a behavior tree is
a hierarchically structured set of actions, combined with conditions that specify
which branch of the tree should be executed.

The use of behavior trees enables the team to speed up the process of creating
and debugging strategies. Because behavior trees are easily constructed, one can
quickly put together a new strategy to see how it performs. And because of the
visual nature of behavior trees, it is expected that bugs are found more easily
than in regular code.

This simplicity of behavior trees also gives the ability to involve people out-
side of the team in discussions about strategy. Even people who are inexperienced
in computer programming, but well-versed in football strategy, can understand
and contribute to behavior trees. At the moment the team is working on collab-
oration with human soccer teams. It is envisioned that if the process of creating
and testing behavior trees is made simple and fun, many people will enjoy col-
laborating with the team to contribute to the soccer strategies.

The formal version of behavior trees that we use is largely based on the
work done by [6]. The described formal and general definition of behavior trees
provides us with a robust platform for structuring our AI. Furthermore, a cus-
tomized internal fork of the Behavior3 Editor2 is used for editing the behavior
trees. Combined with custom tooling and interfaces in ROS and the rest of our
tactics module we have already used behavior trees for various tasks, including
debugging our robots and designing our qualification performance.

4.3 Strategy & Tactics

Strategic Architecture. The key challenge of the RoboCup Small Size League
is intelligent coordination of a multi-robot system while dealing with rapidly
changing circumstances and an unpredictable opponent. In order to ensure that
all the robots always act according to the collective goal of scoring more goals
than the opponent, a multi-level strategic planner has been developed. Just like
many other SSL-teams an approach based on different levels of abstraction is
used as described in [7].

On the lowest level a number of skills are defined. Skills are functions that
transform specific, short-term goals for a single robot to low-level robot instruc-
tions. One level higher roles are used. A role is assigned to a single robot and
determines which skill to execute with what parameters. Roles are generated
from behavior trees. The next level is the plays layer. A play directs an arbitrary

2 http://editor.behavior3.com



number of roles. When initializing the roles, it can decide on what parameters
the role should use. And while the roles are running, the play keeps the overview
and decides when to terminate the roles. On the highest level is the strategy.
Only one strategy is running during any game. The strategy is generated from
a behavior tree, just like a role, and determines which plays to execute based on
the state of the game. The strategy also takes into account referee commands,
and chooses the appropriate plays when new commands are issued.

The design of the software structure is based on requirements considered im-
portant, like flexibility and simplicity. The system developed is especially flexible,
because a play can control any number of robots, rather than a fixed number.
On top of that, behavior trees increase flexibility as discussed before in 4.2.

Skills. The most low-level nodes in the behavior trees are skills and conditions.
Skills are functions that transform specific, short-term goals for a single robot,
such as ’get the ball’ or ’kick the ball’, to velocity commands. This abstraction
level allows for very concise and clear behavior trees in the higher levels of the
strategic architecture, because most of the logic and computation is done within
the skill.

Skills are functions that take certain input arguments, based on the task
they are designed to perform, and output a velocity command for a single robot.
Besides this simple functionality, however, skills also have access to the complete
current state of the game, hence their output can be (partly) based on events
currently happening in the field. Because skills are updated as soon as new
information about the world state becomes available, it allows for quick responses
to changing and unpredictable circumstances.

An example of one of the skills is the GoToPos skill, an advanced position
controller, which takes as input argument a target position and orientation, and
computes a velocity that moves the robot towards its goal. In addition, the
GoToPos skills can take into account the position of all other robots in the field,
and adapt the computed velocity such that it does not collide with them.

Another example of a skill is the ReceiveBall skill, which takes as input
argument a position where a robot should wait to receive the ball. Then it
computes the exact position where the robot can receive the ball, based on the
current position and velocity of the ball, but also on whether another robot in
the game is currently exerting influence on the ball and is expected to change
its velocity.

Skills can internally call other skills and conditions, which allows for more
complex behavior. Although this opens countless possibilities for skills, it is im-
portant to note that skills remain focused actions executed to achieve a specific,
short-term goal. A situation in which skills can be combined is in the GetBall
skill, which internally calls GoToPos in order to steer a robot towards the ball.

Conditions. Conditions can be used in behavior trees to determine which play,
skill, or set of skills should be executed based on the state of the game. Condi-
tions can be used in the strategy behavior as well as in the role behavior trees.



A condition is a function that returns either true or false, based on which a
certain branch of a tree can be chosen. Examples of conditions that are used are
IHaveBall, BallOnOurSide and IsRefereeState.

Roles. A role is a behavior tree that is built up of skills and conditions and
directs one robot. Unlike skills, the functionality of a role is quite simple. A
role is basically a sequence of skills, combined with instructions on when to
execute them. Combined with the behavior tree format this makes it very easy
to construct and adapt roles. This means that once there is a sufficiently large
base of skills it is very easy to quickly develop and test completely different
strategies. It is also useful when working together with people who are very
experienced in football strategy but not so much in computer programming.

Plays. A play directs an arbitrary number of roles that work together to reach a
collective goal. When a play is initialized, it starts the relevant roles and chooses
parameters for these roles based on the current state of the game. Every time
the play is subsequently called, it checks whether the conditions for executing
this play are still present, and whether the parameters given to the roles are still
optimal. If they are not, it either quits executing or adapts the role parameters.

Strategies. The strategy is the highest level of abstraction within the strategic
architecture. Only one strategy can be active at a time. A strategy chooses
which plays should be executed. It does this partly based on the state of the
game. The strategy also keeps track of referee commands, and only chooses
plays that comply with the rules applicable to the current state of the game.
A functionality that will be looked into in the future is a strategy which keeps
track of all executed plays in a game and takes this information into account
when choosing new plays in the rest of game.

4.4 Graphical User Interfaces

General. Most of the graphical tools are implemented in the graphical frame-
work of ROS, called ’RQT’. This has the benefit that the Graphical User Inter-
face (GUI) programs have full access to the messages being passed around in
the software system.

World View. The first GUI is the World View, as seen in Fig. 8. This view
displays the positions of the robots and the ball, along with the basic referee
messages. In addition to this, the world view can also display points and lines.
These can be drawn by any node running in ROS by sending a line or point
message over a ROS topic. This is primarily used by skills to visualize their
internal calculations. This GUI can also be used to quickly test skills and roles
by executing them from the panel on the right. The parameter set of the skill or
role to be tested can be filled with the desired values before running it on the
desired robot.



Tree Debugging View. For visualizing the state of behavior trees the Tree
Debugging View is used as seen in Fig. 9. This view displays any behavior trees
that are currently running in the software system and highlights behavior tree
nodes when they get evaluated. The state of a node is color-coded, where blue
indicates running, red means failure, and green is success.

Fig. 8: The World View with the referee and skill test panels open

Fig. 9: The behavior tree debug view



Logplayer. The logplayer used3 to analyze the logs of earlier games is a fork
of the original SSL-logplayer4. Some improvements were made to the original
logplayer, mostly regarding the user interface. The most notable improvement
is the addition of bookmarks. When loading a new log file all referee commands
are added to the bookmark list, as can be seen in Fig. 10. This list allows for
quick browsing of notable events during the match. In addition to the referee
bookmarks one can add custom bookmarks, which are highlighted in yellow.
These bookmarks are saved next to the log file as a JSON file. Other minor
additions are the ability to play on half or double speed and the ability to skip
forward and backward a few seconds at a time. Lowering the speed is especially
useful when analyzing games as the play can sometimes go too quickly to really
see what is happening at normal speed.

Fig. 10: The logplayer interface

5 Conclusion

This paper described all the hard- and software of the RoboTeam Twente. Ev-
erything is described with detail to hopefully help new teams with building their
own robots. There is still a lot of work to do this year, some possible improve-
ments have been suggested. The big amount of students involved and resources
available gives the possibility of endless improvements, especially the following
months.

3 https://github.com/RoboTeamTwente/ssl-logtools
4 https://github.com/RoboCup-SSL/ssl-logtools



References

1. Adhami-Mirhosseini, A., Bakhshande Babersad, O., Jamaati, H., Asadi, S., & Gan-
jali, A. (2012). MRL Extended Team Description 2012. In Proceedings of the 15th
International RoboCup Symposium, Mexico city, Mexico.

2. Ganjali Poudeh, A., Sobhani, S., HosseiniKia, A., Karimpour, A., Mosayeb, S.,
Mahmudi, H., Esmaeelpourfard, S., Kassaeian Naeini, M., & Adhami, A. (2016).
MRL Extended Team Description 2016. In Proceedings of the 20th International
RoboCup Symposium, Leipzig, Germany.

3. Ryll, A., Ommer, N., Geiger, M., Jauer, M., & Theis, J. (2015) TIGERs Mannheim
Extended Team Description for Robocup 2015. In Proceedings of the 19th Interna-
tional RoboCup Symposium, Hefei, China.

4. Yasui, K. et. al (2013). RoboDragons 2013 Extended Team Description Paper. In
Proceedings of the 16th International RoboCup Symposium, Eindhoven, Netherlands.

5. Monajjemi, V., Koochakzadeh, A., & Ghidary, S. (2012). grsimrobocup small size
robot soccer simulator. RoboCup 2011: Robot Soccer World Cup XV, 450-460.

6. Marzinotto, A., Colledanchise, M., Smith, C., & Ögren, P. (2014, May). Towards
a unified behavior trees framework for robot control. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on (pp. 5420-5427). IEEE.

7. Browning, B., Bruce, J., Bowling, M., & Veloso, M. (2005). STP: Skills, tactics, and
plays for multi-robot control in adversarial environments. Proceedings of the Institu-
tion of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
219 (1), 33-52.



A Schematic Overview Motor Controller Board


	RoboTeam Twente 2017 Team Description Paper

