
KIKS 2016 Team Description

Tatsuro Sakaguchi, Koh Ohno, Toshiki Mimura, Naoki Tanaka, Kenta Satoh,

Yu Yamauchi, Yoshimasa Nagasaka, Masato Watanabe and Toko Sugiura

Department of Electrical and Electronic engineering,

National Institute of Technology, Toyota College,

2-1 Eisei-cho, Toyota Aichi, 471-8525, Japan

email: sugi@toyota-ct.ac.jp

URL: http://www.ee.toyota-ct.ac.jp/~sugi/RoboCup.html

Abstract. This paper is used to qualify as participation to the RoboCup 2016 small

size league. Our team's robots and systems are designed under the RoboCup 2016

rules. The major points of improvement in this year are about the kick bar, motor

unit, electrical circuit and AI system. The overviews of them are described.

Keywords: RoboCup, small size, autonomous robot, global vision, engineering education

1. Introduction

KIKS mainly consisted of seventeen students 21 and younger that has been compet-

ing at RoboCup since 2002. In RoboCup last year, we had bad performance in both of

Japan open and world competition. The main reason is that the technical know-how is

not handed down from elders to new students in sufficient, and also related to a decrease

in membership. In this coming competition, we would like to approach the game as

new-comer restudying all over from the basics.

We still have many problems with a kinematic, an electrical circuit and strategy per-

formance of robots. In order to solve these problems, we attempted to improve our

robots in 2015 [1]. It is described as the terms of the mechanical, electrical and elec-

tronic, software as follows.

2. Mechanical improvements
Our robots are equipped for two type of kicking devices, dribbling device and other

minimum functions based on the rule of SSL. But, these equipment do not play enough

role during the game. Now, we can say that serious problems are belong to straightness

of kicked ball and running stability of the robots.

2.1. Improvement for kick device

http://www.ee.toyota-ct.ac.jp/~sugi/RoboCup.html

About the term of straightness related kick devices, we tried to change the kick bar

that has the shape like a parabola. As the results, this shape gave us the good suppres-

sion efficiency for variability of ball’s direction. Figure 1 shows new shape of kick bar

(left) including old one (right). We evaluated about straightness of kicked ball. The ball

was kicked to the destination located 1m away from robot. In previous kick bar, it found

that the standard deviation of arrived positon of ball is 5mm over, while new curved

bar was less than 0.5mm. It means, that is, 10 times better than previous one. Moreover,

that performance is depending on not only shape but also material. It was found that

plastic bar shows better trend, if compared with metal bar. So, we will introduce this

new kick bar, after the detailed evaluation of performance about durability and other

factors between plastic bar and metal one.

Fig. 1 Shape of kick bar (left one is newer)

2.2. Improvement of related motor unit structures

We made efforts to simplify manufacture the motor unit. Up to now, we had need to

make screw hole on the gear, and tighten screw to connect with motor axis. In new

method, the gear is simply connected with motor axis using dual liquid adhesive agent.

We examined the applicability of that method on terms of strength. As the results, there

is no problem, and it helps us to design thinner motor unit, as shown in Fig. 2. It was

possible to thin about 6mm.

On the benefits of thinning motor units, we can design and arrange flexibly equip-

ment such as solenoids or dribbling devices with less limitation because inside space

of the robot might have larger volume.

Fig. 2 Thinner motor unit (Left one is newer)

2.3. Trial to introduce 70 Watt motors

We tried to introduce 70 Watt motor to enhance the motion performance of robot.

2.3.1. Trial a mechanical term

Maxon EC45 flat 30Watt motor (200142) is now used in our robot with 18:60 reduc-

tion ratio. In this case, maximum torque is 750mNm and maximum speed of the robot

is 3.4m/s theoretically under the condition of no load. While the case of maxon EC45

flat 70 Watt motor (402687) will be used, and motor’s torque will be 915mNm. This

is, 70Watt motor’s torque is 1.2 times stronger than present one. It suggest that use of

the 70Watt motor can be used without any reduction system. Moreover, we expect to

be faster robot because maxim speed of the robot with 70watt motor is prospected to

be around 9m/s under the condition of no load. The test-robot with maxon 70Watt mo-

tors and 70Watt motor unit are shown in Fig. 3. Furthermore, this 70Watt motor unit

designed as thin as 30 Watt motor unit, because there is no need to use reduction gears.

We have not done enough quantitative evaluation yet, but stability and acceleration

of the robot have become better on qualitative viewpoint. So, we will test continuously

about the performance of this robot that have 70Watt motor and make a replacement

from present robot.

Fig. 3 Test robot using 70 Watt motor and 70 Watt motor unit

2.3.2. Improvement of circuit for 70Watt motor

We tried to make an attempt of the circuit for implementing 70Watt motor. In that

case, it will be need to use two 6cell Li-Po batteries. Up to now, however, our main

circuit board (which can manage the communications and control the motor driver) can

only be applied up to 25V. So, it was made the improvements to be able to apply 50V.

Then, we designed it not connecting to kicker board (which can charge and manage the

capacitor, and operate switching device called IGBT when it get kick-command).

Current main board is worked with a 4cell Li-Po battery, so it designed on the max-

imum voltage of 17V. And DC-DC converter IC, which apply for the four kind of volt-

ages now we are using, can give us only until 40V. We could not find any IC applicable

for 50V to replace old IC. So we tried to redesign a circuit to step down the voltage for

power IC and to connect directly for motor FET as shown in Fig. 4.

We had to evaluate and decide as soon as possible about the use of the 70Watt motor.

We do not have much time to verify as our finished circuit. So, we adopted the way as

making extension sub-board and mounted on the main circuit board. The power line

which comes from Li-Po Battery is distributed to the Motor Driver IC and DC-DC

converter. Then it steps down to 15V from 50V the voltage through DC-DC converter

50V and output 15V. In addition, for the capacitor and diode, it was replaced to appli-

cable equipment working on 50V power line.

Fig. 4 Power line from Li-Po battery

50vLipo

step down

DC-DC Converter

Power IC

M

Motor FET

3. Improvement of circuit

3.1.1. Trial a use of SoC FPGA

Right now, our electronic circuits are working well without any problems. We can

confirm the wheel speed for each robot, ball sensor status through Windows computer

via USB. Each robot controls four motor by sending data from AI computer during the

game. In this year, we tried to make an improvement to replace from the function of AI

to that of robot partly. It was examined by using SoC FPGA. To introduce SoC FPGA,

we renewed a circuit as shown in Fig. 5. DE0-Nano-SoC placed in center of the renewal

circuit has ARM CortexA9. Linux OS supplied as the FPGA vender is able to run on

the CPU.

In our FPGA, it has two 40-pin expansion headers. The header drives include the

BLDC motors, sensor, communication device and so on. DE0-Nano-SoC also has ADC

(Analog Digital Convertor) which can get battery voltage. Hardware on FPGA can be

controlled by ARM running on Linux via FPGA-ARM bridge, if we want to do. Now,

it was finished on the point of controlling four BLDC motors. It is remained future

research that it makes the connection between AI an the board via wireless communi-

cation and controls motors. The board will supply much resource to calculate faster.

(a)

(b)

Fig. 5 Circuit exterior of new conception

3.2. Role of AVR

3.2.1. Communication and processing on AVR

An AVR has a function of transition via USB on a physical layer. We can use “Ter-

minal” developed to write only on logics and each of firmware on FPGA through AVR.

In working of FPGA, it is getting several information on a queue and AVR also has a

role which send information from queue to “Terminal”.

3.2.2. Management for battery

An AVR have an ADC connected with a battery. The battery level corresponding to

three statuses is displayed as the color of LEDs to lead us to understand visually. A

final voltage of Li-Po battery is 3.3V. Therefore, when a voltage of cells on a battery

downs to 3.3V, the process is finished and the power are shut down for protection.

3.2.3. Programing on FPGA

Spartan-6 which use for motor controls is a volatile FPGA. Thus, if it is shut down

the power, the structure information of FPGA is vanished. We must write to FPGA as

an initialization. An AVR connects to writable pins on FPGA to programs to one form

a nonvolatile memory (EEPROM) at starting process. Also an openMSP430 Core

working on FPGA is written at the same time because of same reason.

3.3. Control for circuit

Motor control is performed by the angular velocity in the FPGA. Two degree of

freedom PI control system is used to improve following performance to target value

and performance of disturbance control. Block diagram of control circuit is shown in

Fig. 6. The ultimate gain method are used to calculate the proportional gain and integral

gain. Ke is given as fixed number of counter electromotive force. Gp, that is, transfer

function model of motor is tentatively adopted 1, because it did not work well in our

experimental stage. So, it is assuming that there is no delay and loss to the input and

output. Similarly, Gd related factor of feed forward compensation is set as 1.

Fig. 6 Block diagram of control circuit

4. Improvement of the AI system

4.1. New AI System

Recently in RoboCup SSL, in addition to the simple control of the robots, it has an

ongoing effort to analyze log data of the game and use for tactics by some teams. In our

AI, however, it is very difficult to do that. Because technical know-how is not suffi-

ciently handed down from elders to new students. In addition, the maintenance and

development for strategy have not fully been continued. So, we decided to rebuild the

next AI system in parallel with the improvement of present system. The concept of this

project and the present situation are described below.

4.1.1. Design

It is expected that PC has high performance for the analysis of data. However, it is

difficult that all developers have such PC. Thus, we examined to divide into the server-

and client- parts as shown in Fig. 7.

Fig. 7 AI System

4.1.1.1. Server

One independent PC that has enough performance executes as server of AI system.

It connects to a Client by RPC protocols like messagepack-rpc [2] and executes the

program of each strategic part in accordance with an order from a client. In addition,

the new module is implemented to record and analyze for the log data of games. It is

not prepared these functions in present system.

4.1.1.2. Client

It is executed by developers’ own computers. It sends the orders of choice and exe-

cution of the strategic program and the change of the parameter to a server. In addition,

it show the game situation based on the information provide from a server.

In present situation, the parts related strategy and communication to the robot does

not sufficiently achieve yet. Other parts are mostly finished. Now, we are implementing

the strategic part to play in the game next coming Japan Open 2016. We have a plan to

analyze the game-log mainly hereafter.

4.2. Field analysis for passing

In recent year, the offence play using some passes a ball become more and more

mainstream. The passes must be succeeded to get scores. However, the defense play is

also getting better in all teams, therefore simple passes tends to fail. We have faced the

serious problem with pass for attacking, and it causes the loss of chance to get scores.

Thus, we made two programs dynamically finding the passing course for a ball. One is

using circles to help an instinctive feel, and the other is using tentative score corre-

sponding to the position of the opponent robots and other field circumstance.

4.2.1.1. Selection using circles

We make circles which show the area enemy's robot can move. The radiuses of these

circles are input by users. These circles are defined as Enemy Circle, and the circle

space where enclosed by three points in contact with outer of Enemy Circle is defined

as Free Circle. These circles are shown in Fig. 8. It is obtained that pass course from

the circumscribed line of Enemy Circles and Free Circles. Figure 9 shows the typical

results displayed on simulator for pass courses.

Blue and red circles show the Enemy and Free Circles, respectively. Pink lines mean

possible pass courses. If we do not want to pass to own penalty area, we can find the

pass-prohibited area. The passing course may include an angle which we want. So we

can set limit value against the angle to allow the pass. Furthermore, learning functions

are able to add to this system. For example, radius of Enemy Circle is possible to change

based on the information for the time spent on passing and enemy robot’s speed. Enemy

Circle is also changed into an oval, if danger areas are spread out depending on the

velocities of enemies. In addition, we can make a prediction the area where enemy robot

pass, if we swap opponent and ally robots.

Fig. 8 Enemy Circle and Free Circle

Fig. 9 Obtained passing courses displayed on simulator

4.2.2. Selection by scoring

In Fig.10, the game field is divided into grids with 500mm x 500mm area and each

of them is assessed as candidates of pass target. Then, each grid has score which is used

when the passing target of ball is decided. We gave the scores for grids in accordance

with six rules described (A) - (F) as follows.

(A) Farthest grid part from an opponent robot, the higher score is given.

(B) Grid located in the direction which opponent robots go, the lower score is given.

(C) Grid located in the back side of opponent robots and ball, the lower score is

given.

(D) Grid located in the penalty area, the lowest score is given.

(E) Grid located in close to a ball, the lower score is given.

(F) Grid located in the direction for attacking area, the higher score is given.

Figure 10-13 show the colored grid with different color based on the condition as

mentioned above. The rule (A), (B) and (C) are indicated in Fig.10 and 11, and the rule

(D), (E) and (F) are indicated in Fig.12, respectively. These figures are classified by the

color bar shown in below.

Fig. 10 Applying the rule (A) and (B)

Fig. 11 Applying the rule (C)

Fig. 12 Applying the rule (D), (E) and (F)

According to each score which shown in the figures, the optimum passing target is

selected. Then, the ε-greedy method is used as the program to decide one passing target.

The ε-greedy method is a kind of selection algorithms which is often used for Q-learn-

ing. This algorithm follows the equation which described in below [3]. 𝐴(𝑠) is the set

of candidates, and 𝜋(𝑠) is the selected candidate.

𝜋(𝑠) = {
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐴(𝑠)

𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝐴(𝑠)𝑄(𝑠, 𝛼)

 𝑖𝑓 𝜉 < 𝜀
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0 ≤ 𝜀 ≤ 1 𝜉 = 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜀)
For random selection, fitness proportionate selection is used in our program. This

method is also known as roulette wheel selection. In this method, the candidate is se-

lected in proportion to fitness. The selection work following this pseudo code [4].

rand = random.uniform (0, total_fitness)

while (sum < total_fitness) {

 sum += fitness [i]

 if (sum > rand)

 // candidate [i] is selected

 i++

}
Moreover, when there are no any ally robots which can receive a ball and estimate

that the pass may be failed, the system redo same step to find another passing target.

Figure 13 shows the passing target which is selected by this selection step, where a blue

circle displays the passing target and a blue line shows the path that ball would go

through after kicked. The receiver robot would go along the black line.

Fig. 13 Passing target and behavior of the receiver robot

Applying this scoring and selecting process to our system, there was variation for the

data between the each location selected as passing target. That is, one target position

was selected many times. Moreover, when the position of ally robots was considered,

there was the case that passing target was not able to select. Therefore, now the selec-

tion must be partly adjusted by somewhat other definitions. In addition, this system

only can find the selection at that moment, because it considers status of robots at each

moment. Thus, we should analyze action patterns and tactics of opponent robots, and

make the system which can select the best passing target.

4.3. Path finding to avoid collision

It is required to avoid collision between robots in RoboCup Small Size League, be-

cause of the importance to prevent from damage of robots. Right now, many teams

adopt the RRT algorithm to avoid collision [5]. Our team also applies it. But, the RRT

algorithm needs a large amount of calculation and the computed paths are complicated

for us. Other teams have introduced using a GPGPU or an improved RRT algorithm,

but we do not think absolute necessary to spend much time to calculate path finding,

and not think proper to search the path individually because ally robots can share mu-

tual information. So, we tried to introduce ORCA algorithm using multi-agent system

which needs less amount of calculation for application to SSL.

4.3.1. ORCA algorithm

ORCA algorithm calculates a velocity region where robots A and B collide during

the prediction time τ and let us know the information that does not select its region [6].

It also make a calculation of the region between the robot A and all robots near the

robot A, it results where a robot A moves.

4.3.1.1. A velocity region where collision occurs

Let relative position 𝑝𝐴𝐵 be defined as 𝑝𝐴𝐵 = 𝑝𝐵 − 𝑝𝐴, where 𝑝𝐴, 𝑝𝐵 are the coordi-

nates of the robots A and B, respectively and the radius 𝑟𝐴𝐵 as 𝑟𝐴𝐵 = 𝑟𝐴 + 𝑟𝐵, where

𝑟𝐴, 𝑟𝐵 are the radius of robots. Then, the region within the radius of 𝑟𝐴𝐵 from the center

𝑝𝐴𝐵 is inside a circle where collision occurs. If the collision region in prediction time τ

is taken into account, 𝑝𝐴𝐵(𝑡) and 𝑟𝐴𝐵(𝑡) are as follows.

PAB(t) =
pAB

t
(0 < t < τ) …………………………(1)

rAB(t) =
rAB

t
(0 < t < τ) …………………………(2)

A velocity region VO𝐴𝐵
𝑡 which robots collide is inside a circle with the radius of

𝑟𝐴𝐵(𝑡) and the center 𝑃𝐴𝐵(𝑡).

4.3.1.2. Selection of velocity

The robot B gives the half-plane limit region to robot A by the ORCA line drawn

from the VO𝐴𝐵
𝑡 and the other robots near the robot A also does. Then, the V𝐴

𝑛𝑒𝑤, which

is likely to match the preferable velocity 𝑉𝐴
𝑝𝑟𝑒𝑓

 of the robot A, is computed by using

linear programming as the limit speed of maximum v𝐴
𝑚𝑎𝑥[7].

4.3.2. Improvement of ORCA algorithm

The algorithm mentioned above section does not consider for acceleration, so it is

not suitable for the situation that change the velocity instantly. In the RoboCup SSL,

the robots move freely with maximum speed of about 3m/s and maximum acceleration

of about 2m/s2 at a refresh period of 1/60s. So it is required to take into account the

acceleration and control the robots to avoid collision.

Firstly, if it considers the acceleration, the velocity gradually changes over time, so

the center 𝑐(𝑡) and the radius 𝑟(𝑡) of a circle of the velocity region which collision

occurs are as follows [8].

𝑐(𝑡) =
𝛿(𝑒

−
𝑡
𝛿−1)𝑣𝐴𝐵−𝑝𝐴𝐵

𝑡+𝛿(𝑒
−

𝑡
𝛿−1)

(0 < 𝑡 < 𝜏) …………………(3)

𝑟(𝑡) =
𝑟𝐴𝐵

𝑡+𝛿(𝑒
−

𝑡
𝛿−1)

(0 < 𝑡 < 𝜏) …………………(4)

Here, δ is defined as a proportional control parameter of acceleration and relative

position 𝑝𝐴𝐵 and relative velocity 𝑣𝐴𝐵 being used in formula (3),(4) are as follows.

𝑝𝐴𝐵 = 𝑝𝐴 − 𝑝𝐵 ……………………………………(5)

𝑣𝐴𝐵 = 𝑣𝐴 − 𝑣𝐵 ……………………………………(6)

The ORCA line is drawn by using the velocity region of a circle with the center 𝑐(𝑡)

and the radius 𝑟(𝑡). Then, linear programming with the center value of the current ve-

locity 𝑣𝐴 is performed under the condition of limit acceleration δ𝑎𝐴
𝑚𝑎𝑥 (𝑎𝐴

𝑚𝑎𝑥 is the

maximum acceleration).

4.3.3. Avoidance simulation using 4 Robots

To confirm the performance for collision avoidance, we put four robots evenly

spaced apart on the circumference of a circle with the radius of 1000mm. Then, we

gave a command to every robot to make moving the opposite point on the circumfer-

ence as shown in Fig. 14.

Each robot start from the smaller-marker and the coordinates are recorded at a certain

interval. The ○ markers shows that every robot avoids the collision by moving to the

right side. Furthermore, even when the number of robots is increasing as 5 and 6, they

also showed the appropriate collision avoidance actions. Consequently, we confirm the

avoidance system can perform if the number of robots is increased.

Fig. 14 Route of the 4 robots by avoidance simulation

4.3.4. Comparison for the performance of RRT and ORCA in actual robot

We confirmed the actions on the simulation system. So in next, we verified its usa-

bility in the actual robots.

4.3.4.1. Comparison of computational speed

ORCA algorithm is superior in computational speed compared with RRT. To demon-

strate this, we measured the time spent to compute the route per one robot as shown in

Table 1.

Table 1 Comparison of computational speed for RRT and ORCA algorithms

 Average time [ms] Maximum time [ms]

RRT 7.65 18

ORCA 0.35 1

It was done under the condition of Windows7 64bit, Core i7-3612QM, 8GB RAM

and used chrono (C++ standard library) to measure the time. In RoboCup SSL, instruc-

tions to the robots were synchronized with a refresh rate of 17ms. From Table 1, we

found that the average time of RRT algorithm was 7.65ms per one robot and resulted

robot A robot B robot C robot D

45.9ms in case of 6 robots. Therefore, that calculation might be performed over refresh

rate. On the other hand, that of ORCA method was less than 1ms. Thus, the computa-

tional speed is suggested about 6ms even at the case of 6 robots. As the results, we

confirmed the computational speed by using ORCA algorithm is faster than that of

RRT.

4.3.4.2. Comparison of collision frequency

Although we confirmed improvement of computational speed as described above, if

the collision frequency is largely increased, it is no good. Therefore, we evaluated the

collision frequency between the 4 robots on the same team. To evaluate it, we use the

time of STOPGAME which robot cannot touch the ball but can be arranged. So, we

count the frequency of near-miss and actual collision between robots during the mov-

ing. After that, the probabilities of collision was calculated as tabulated in Table 2. On

similar condition, we add the fixed three markers which indicates enemy on the field

and performed experiments again. The results are tabulated in Table 3. These results of

ORCA algorithm looks like better than that of RRT. In table3, it is shown that RRT

algorithm had difficulty making path finding, because of the markers of the enemy was

put and the density of robots on the field was raised. As the results, the collision might

be increased. On the other hands, in case of ORCA, the probability of collision was less

than 30%.

The probability using ORCA algorithm was about 25% in both of Tables 2 and 3.

This might be caused by setting the exact size of robots. That is, the lack of margin

might be contributed to the collisions happened by missing control for robots and errors

in information of cameras.

Table 2 Comparison for collision probabilities of 4 robots on RRT and ORCA

 probability of collision [%]

RRT 35.00

ORCA 27.27

Table 3 Probabilities for collision in case of 4 allies and 3 enemies put on the field

 probability of collision [%]

RRT 45.00

ORCA 21.74

4.3.4.3. Comparison for travel time

It is easy to avoid collision at low speed but that situation may not occur in actual

game. So, we also evaluated the travel time comparing the RRT and ORCA under the

same condition as previous section (four ally robots and fixed three enemies). The re-

sults are summarized in Table 4.

Table 4 shows that the travel time of ORCA algorithm is about 25% less than that of

RRT. This might be referred that ORCA was repeated acceleration and deceleration of

the robots depending on the nearby situation, while RRT is always done at the maxi-

mum speed. It seems that ORCA algorithm looks like better than RRT in terms of com-

putational speed, and the performance of collision avoidance in practice game at actual

field is also good. Although collision is happened, the collision avoidance system is

worked so well compared with previous our system. However, the present ORCA sys-

tem is no good in respect of travel time now. So, we have to improve moving speed of

robot while the current probability of collision is maintaining. Up to now, we may not

be able to evaluate it sufficiently on our system in various situations, for example, the

enemy robots are moving. Therefore, we are going to verify this system in practice

games and next coming Japan Open and try to maintain the improvement for collision

avoidance and moving speed of robots.

Table 4 Comparison of travel times of 4 robots on RRT and ORCA algorithms

 average travel time [s] maximum travel time [s]

RRT 10.46 21.72

ORCA 13.21 25.89

References

[1] T. Sano, S. Okuda, K. Matsuoka, Y. Yamauchi, H. Yokota, T. Sakaguchi, M. Watanabe, T.

Sugiura: KIKS 2015 Team Description Paper, http://www.ee.toyota-ct.ac.jp/~sugi/RoboCup.html

[2] https://github.com/msgpack-rpc/msgpack-rpc/blob/master/spec.md

[3] M. Tokic: Adaptive ε-greedy Exploration in Reinforcement Learning Based on Value Differ-

ences, http://www.tokic.com/www/tokicm/publikationen/papers/AdaptiveEpsilonGreedyExplora-

tion.pdf

[4] K. Dolan: Genetic Programming Source, http://geneticprogramming.us/Selection.html
[5] J. Bruce and M. Veloso : Real-Time Randomized Path Planning for Robot Navigation, RoboCup

2002: Robot Soccer World Cup VI, vol. 2752, pp. 288-295 (2003)

[6] J. van den Berg, S. Guy, M. Lin, D. Manocha: Reciprocal n-body Collision Avoidance Robotics

Research, vol. 70, pp. 3-19 (2011)

[7] T. S. Ferguson: LINEAR PROGRAMMING a Concise Introduction, http://www.math.ucla.edu/~

tom

[8] J. van den Berg, J. Snape, S. Guy, D. Manocha: Reciprocal Collision Avoidance with Acceleration-

Velocity Obstacles, Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp.

3475-3482 (2011)

