
Small Size Holland
Team Description Paper

RoboCup 2016

Joost Overeem, Rimon Oz, Nanko Schrijver, Jeroen de Jong,
Thomas Hakkers, Ryan Meulenkamp, Jelle Meijerink,

Nick van Deth, Michel Teterissa, Sven Dickers,
Emre Elmas, Mark Lefering, and Rob van den Berg

Life Science Engenineering and Design, Saxion University of Applied Sciences,
M.H. Tromplaan 28, 7513 AB Enschede, The Netherlands

robocup.saxion@gmail.com

http://www.SmallSizeHolland.com/

Abstract. This paper outlines the major design decisions, and imple-
mentation and test results by Team Small Size Holland since participat-
ing in Robocup 2015 in Hefei, China. Progress was made on the develop-
ment of a new team of modular robots and significant steps were taken
in redesigning the software with the goal of going open source right after
Robocup 2016 in Leipzig.

Keywords: Robotics, Easy Disassembly, Omni Wheels, Dribbler, CPU,
Dual Core Combined with PFGA, Energy Based Strategy

1 Introduction

Small Size Holland (Team SSH) from Saxion University, the Netherlands, builds
upon the ongoing research of previous years. This paper outlines the work since
the the team’s previously published paper [1]. In July of 2015 we started working
on redesigning both software and hardware.

At the tournament in Hefei we played with our first generation of match-
ready robots. With the insights gained from the analysis of video material of
the matches, we went straight back to updating the hardware of the robot and
working on a rewrite of both the server- and robot-software. The new team of
robots is expected to be fully assembled and ready to go by May.

This paper discusses the major changes in hardware and the software, includ-
ing an overview of the strategy. Chapter two discusses the mechanical changes.
The third chapter presents the new CPU and other electronical improvements.
Chapter four describes the new software and a novel approach to SSL-strategy.

Besides the ongoing development of the robots, we have decided to open
source all of the code and are in the process of getting the documentation in
order. We expect this process to be done by July.

2 Small Size Holland, Saxion

2 Mechanical Design

During the matches in Hefei, we realised that the previous generation of robots
had issues with ease of maintenance. During the games there were quite a few
broken motor-controllers and malfunctioning kicking mechanisms. Because of the
way the robot was built these repairs were both time-consuming and expensive.

To solve both these problems we decided to modularize the robot; every
part has to be easily replaceable in order to drive down expenses and hours of
maintenance. To accomplish this, we decided to subdivide the robot into several
areas: wheel modules, a chargeboard, a motherboard, a dribbler, a chip-and-kick
module, the hull, the battery and its socket, and wheel arches. All these parts can
be replaced or removed individually. This will accomodate further research, since
prototypes for new modules can be hotswapped without (partially) redesigning
the robot.

2.1 Wheels

(a) Seperate Wheel Module (b) Module Connected into the Robot

Fig. 1: Wheel Module Assembly

We have decided to move from a 3-wheel design to a 4-wheel design. Main
reasons for this were the ease of controlling a 4-wheel robot and a better dis-
tribution of leverage for each wheel in all driving directions. This will prevent
the robot from undulating and also result in a higher speed in desirable driving
directions.

Wheels should have as much grip as possible to accelerate faster. The previous
design used omni-wheels with cassette tape wheels as gear teeth to grip the grass.

Small Size Holland Team Description Paper RoboCup 2016 3

This approach did not work and as a side-effect the robot bounced up and down
while driving. Our proposed solution is to use omni wheels that have a rounded
rubber surface as shown in Fig. 1. This idea was based Robert L. et al. findings
on grip [2] and suitable wheels we found on the internet.

To make it easy to disassemble the robot or change eg. the gear ratio, we
made the wheel module a replaceable component like shown in Fig. 1a. The
entire module can be replaced by removing two screws.

(a) Test Set-up (b) Depressing Dribbler Module

Fig. 2: Dribbler

2.2 Dribbler

The first team of robots we played with had fixed dribblers covered with an inner
tube from a bikewheel. The dribbler is driven by a 944D Motor with a nominal
rotational speed of 2000 rpm. During tests, and also the matches played, we
found that the robots were not able to receive a pass properly.

We decided to replace the inner tube with a thicker layer of rubber which is
both softer and has more grip. The rubber we used is Linatex1. Testing of this
setup showed that the rubber did not increase the shock absorption enough, but
increased the grip enormously.

To increase the likelihood of completing a pass, we designed a construction
in which the dribbler depresses as the robot receives the ball. Our test set-up,
shown in Fig. 2a, was able to receive a pass at a speed of 6m

s . The design of the
dribbler assembly, which is based on the test set-up, is shown in Fig. 2b. The
current construction makes use of 90◦ torsion springs.

1 *An industrial rubber from The Weir Group PLC that was specially treated by
Egberts Rubber B.V.

4 Small Size Holland, Saxion

Specification EC16 Motor 994D Motor

Voltage (DC) 12 V 6 V
Nominal Rotational Speed 39300 rpm 2000 rpm
Torque 7.85 mNm 1.76 mNm

Table 1: Dribbler Specifications

We also wanted to be able to control the rotational speed of the dribbler
for performing moves such as a back heel, for gaining possession while turning
around, etc. For gaining possession we need a better combination of grip and
rotational speed than the opposition. Our solution for this is a new dribbler
motor: an induction motor with a nominal speed of 39300 rpm. The specs of the
old and new motor are shown in Table 1.

3 Electrical Design

+5 VCC +3.3 Analog/PWM

Power

Logic

Chipper

Kicker

DC-DC Buck

+5

+3.3

Physical Inputs

4 bit DIP *2

Push Button *2

Accelero-gyro

Gyro_SCL

Gyro_SDA

Gyro_AD0

Gyro_FSYNC

Gyro_INT

CPU

FPGA

Speaker

Speaker_Audio

M
o
t
o
r

E
n
c
o
d
e
r

D
r
i
b
b
l
e
r

I2C

Ball Detection

Sensor_SCL

Sensor_SDA

Sensor_Trigger

Sensor_Interrupt

I2C

Chargeboard

Kicker_control Chipper

Chipper_control Kicker

Motorcontroller *4

Motor_Diag/en Motor_out_1

Motor_FWD/Rev Motor_out_2

Motor_Brake Motor_out_3

Motor_Speed Motor_Hall_1

 Motor_Hall_2

 Motor_Hall_3

 +5V

 GND

Wireless

SCK

SS

MISO

MOSI

 SPI

Capacitors

High voltage

Dribbler controller

Dribbler_IN_1 Dribbler_Out_1

Dribbler_EN_1 Dribbler_Out_2

Dribbler_IN_2 Dribbler_Out_3

Dribbler_EN_2

Dribbler_IN_3

Dribbler_EN_3

Trigger_1

Trigger_2

Comparator_1

Comparator_2

Trigger_3 Comparator_3

Spare IO’s

Fig. 3: System Diagram Hardware Motherboard

Our previous charge board had a few issues, and with the redesign of the
frame, we decided to do a redesign of the circuit. The charge board is now
combined with the switch board (the board in our previous design containing
the MOSFETs). The board is better fused and is now situated separately from

Small Size Holland Team Description Paper RoboCup 2016 5

other electronics. The charge board is placed in the center of the robot in order
to increase the safety for people handling the robot.

The motherboard also contained a few mistakes, so we made a redesign of
the motherboard as well. Most of the proposed functionality would be covered
by a new and powerful CPU, described in Paragraph 3.1. Furthermore, there
were two new motor-controllers which had to be added: one for the extra wheel
and one for the new dribbler motor. Lastly, we decided to integrate a few new
sensors. All these subsystems are on the motherboard and their connections to
external components are shown in Fig. 3.

3.1 CPU

Fig. 4: System Diagram Hardware CPU

The previous generation of robots have an ARM Cortex-M3 on an MBED.
This is a single core processor which makes it impossible to send and receive
simultaneously. In order to support parallel processing of data the robots need
a secondary processor. Increasing the communication capabilities of the robot
allow us to send more data. The server will utilize this in collecting a variety of
metrics from the robots such as their charge level of both batteries and capaci-
tors, ball possession and debug information during (and outside of) the game.

Because of the latency between the movement of robots and the robots re-
ceiving commands to alter their speed and/or direction, the robots should be
able to do small movements autonomously. For guidance of small autonomous

6 Small Size Holland, Saxion

movements we have built an accelerometer, a gyro sensor, and encoders into
each robot. However, processing the sensor data to a precise position of the
robot takes more processing power than is possible with the current MBED.

In order to keep the robot as modular as possible, we decided to make the
CPU a pluggable unit, similar to the MBED in the previous generation of robots.
To be able to send and receive wireless message simultaneously, we chose a
dual core processor. For the real time regulation of the motor controllers, and
processing of sensor data, we decided to integrate an FPGA into the system. The
result is a hybrid processor consisting of a LPC4337JBD144 microcontroller and
a Cyclone IV EP4CE22E22C8 FPGA. The microcontroller consists of a Cortex-
M4 and Cortex-M0. We made 10 user defined data lines between the FPGA and
the microcontroller in order to have a fast communication, as shown in system
diagram in Fig. 4.

3.2 Robot communication

In our first design the most obvious method of data transmission was chosen
based on research done previously in SSL, but there was no in-house research
done on alternatives. This year we did research on what method of communica-
tion is the best. For the method of data transmission and a suitable chip, the
most important requirements of the communication were: support for protobuf,
reliable data transmission, and low latency. Minor requirements we had were the
use of standard equipment and the possibility of updating the robot software via
the wireless communication.

Wi-Fi doesnt need a separate base station, such as the one needed for the
NRF, because the server has a Wi-Fi card. Also, Wi-Fi makes it possible to
easily flash new software on the robots OTA. Based on these advantages, we
decided to switch Wi-Fi given it could provide enough performance.

To measure the performance tests were performed with two different Wi-Fi
chips. The tests were done as follows:

1. Microcontroller broadcasts a number of packets with timer data.
2. Wi-Fi chip receives packets and sends them via UART to the microcontroller.
3. Microcontroller subtracts the timer data in the packet from the current time.
4. Microcontroller calculates the packet loss by counting the difference in sent

and received packets.

With the Espressif ESP8266 we measured an average latency of 6 ms. This
was good enough to make the switch to Wi-Fi. We had two chips which met
the requirements: the Espressif ESP8266 and the Microchip RN1723. We chose
the Espressif ESP8266 since it supports UART as well as SPI and it is easy to
program.

4 Software

In an effort to modernize the software architecture, we decided to re-evaluate our
application stack. The previous iteration of our software consisted at the front

Small Size Holland Team Description Paper RoboCup 2016 7

of a monolithic Swing GUI with controls and a 2D representation of the field.
The backend consistend of an event-based system for assigning roles to robots,
a Dijkstra path planner for robot movement, several hard-coded strategies and
a highly deterministic strategy selector.

Since then we have updated from Java 7 to Java 8, and have replaced the
old Swing GUI with a custom-made JavaFX framework with a 3D representa-
tion of the field in the front-end. Our back-end has been completely redesigned
and replaced with a responsive energy based model [4] managed by our own
asynchronous stream-processing framework. Furthermore, we built our own in-
telligent key-value store which serializes models to human-readable JSON.

The main goal in a rewrite of the software was to build a platform with
which (future) team members, and of course other teams, can easily create and
test functionality. With this goal in mind we have decided to take the necessary
steps to open source our software and documentation. We will release a new
version of the software every half year and will have a public Git repo tracking
our progress on the software. The first version of our new system, named Leo
Regulus, is scheduled to be released at the beginning of July.

4.1 GUI

Fig. 5: The new GUI

The GUI has been rewritten in JavaFX, using FXML for markup. In the new
iteration of the software we have a composable interface, with widgets capable of
representing any values in the model either graphically or by text. This enables
our engineers working on the robots to receive instant feedback. The composable
views are fully configurable and can be saved in a profile. We integrated profiles

8 Small Size Holland, Saxion

to enable different engineers to work with different workspaces using the same
program.

3D representation of the field The GUI has a 3D component to represent
the field. Since other teams in SSL soccer are starting to master the use of
the chipper, we are trying to anticipate this by using a 3D representation of
the field which can visually represent the vertical position of the ball. The 3D
environment has controls for several pre-set views of the field and a camera
which can be set at any angle and moved to any position of the field. We make
use of our own layer built on top of JavaFX which binds all data in the model
to the 3D environment. This gives us instantaneous support for arbitrary field
sizes, multiple goals, multiple balls, non-standard team-sizes, and other Technical
Challenge material.

Game log player In order to review game logs and support replay of game
data we have built a game log player into the system. The application allows
engineers working on the strategy to test certain moves which have been logged
before and review their usability. We are currently in the process of integrating
the game log player with the robot control unit in order to play back game logs
with physical robots.

4.2 Strategy

Fig. 6: Scalar energy representation of two robots

Small Size Holland Team Description Paper RoboCup 2016 9

The strategy system received a complete overhaul. We decided to use a sim-
ple energy-based model [4] in which the information gathered about a robot,
such as position, velocity, and orientation, is mapped to scalar quantities in a
two-dimensional grid. This way we can visually represent the state of the game
in a sort of heatmap (see Figure 6) and translate strategic problems, such as
determining the optimal destination for a robot or determining success rate of
a shot, into problems of vector calculus, such as finding local minima/maxima
or performing a line integral. The model we have developed so far draws on
both energy-based models [4] and ideas from anti-gravity movement [5]. As our
research in this area appears to be novel, we are in the progress of writing an
additional paper on this topic and would welcome any questions and/or sugges-
tions.

4.3 Pipelines

To manage the incoming stream of data from ssl−vision and ssl−referee and
the outgoing streams of data to the robots we have built our own asynchronous
stream processing framework. The framework is multithreaded and processes
packets on a first-come first-served basis. Packets of data are classified and pro-
cessed by the corresponding data pipeline. An I/O management system is used
to read network packets and transform protobuf data to a packet suitable for
the pipeline before processing.

The architecture of a data pipeline in this system consists of producers, cou-
plers, and consumers. Producers generate data and are primarily used in the
absence of real ssl− vision data to simulate games. Couplers are used to trans-
form data and are used in computing data corrections and transformations, such
as the unscented Kalman filter we use, calculation of strategy-related metrics,
or eg. a ghosting filter. Lastly, consumers catch packets at the end of a pipeline
and are used to update a model, the console, or a file.

Fig. 7: Pipeline route

Managing dataflow To be able to express the flow of data in a human-readable
format we created a regular language to denote pipeline-routes. This language,

10 Small Size Holland, Saxion

named PEPE (short for PEPE: Evaluates Pipeline Expressions), can handle
parallel and series processing of data and has support for functions. A PEPE-
expression could look like the following:

vision > kalman > logger > (model | (strategy > sendcommands))

which would result in the pipeline route being created as shown in Figure 7.

4.4 LUA

Besides having a language to express the flow of data, we wanted to have scripts
which could be used to alter the flow of data based on the state space configura-
tion. In choosing a language for these scripts we decided to go for a well-known
high-level language: Lua. Lua has been used by at least one other team in the
league [3] and considering its simplicity and easy-to-read syntax we believe the
use of a high-level language for expressing global strategies will enable more
people to work on such strategies.

A console was added to the GUI which functions as a Lua REPL (Read-Eval-
Print-Loop). Also, an editor with syntax highlighting was created to write, save,
and execute Lua scripts. Internally, we expose Java objects to the Lua engine
by adding an annotation (@AvailableInLua) to the class.

References

1. Emmerink, T., Berg, R. van den, Overeem, J.W., Hakkers, T., Jong, J. de, Van
Ommeren, J., Meulenkamp, R.:SSH Team Description Paper for RoboCup 2015.
Enschede (2015)

2. Williams II, R.L., Carter, B.E., Gallina, P., Rosati, G.: Dynamic Model with Slip
for Wheeled Omni-Directional Robots. Final Manuscript, IEEE TRANSACTIONS
ON ROBOTICS AND AUTOMATION, (2002)

3. Zhao, Y., Xiong, R., Tong, H., Li, C., Fang, L.: ZJUNlict Team Description Paper
for RoboCup 2014. Zhejiang (2014)

4. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tutorial
on energy-based learning. Predicting structured data.

5. Anti-Gravity Movement. (n.d.). Retrieved December 5, 2015, from
http://robowiki.net/wiki/Anti-Gravity Movement

