
RoboJackets 2016 Team Description Paper

Gabriel An, Justin Buchanan, Sean Csukas, Boris Iachonkov, Jonathan Jones,
Jay Kamat, Ahmed Mansour-Elsayed, Andrea Mycroft, Sameer Naeem, Ryan

Strat, Will Stuckey

Georgia Institute of Technology

Abstract. The RoboJackets RoboCup SSL team was founded in 2007
and has competed every year since. The team’s objective this year was
to complete the new fleet of robots and associated software, that we
began developing in 2014. This paper outlines further progress made on
the robot design. We also outline improvements in our manufacturing
techniques and software development workflow.

Keywords: RoboCup · RoboJackets · Small Size League

1 Mechanical

Mechanical improvements made from last year are described in this article. The
Kicker-Chipper system was completely redesigned from last year, taking lead
from Tiger Mannheim’s design [1]. Testing was also done on damping dribbler
where spring damping and spring-foam damping were compared. Lastly, efforts
were made to initiate future plans for improvements to increase the functionality
and improve the manufacturability of the robot.

1.1 Kicker-Chipper System

The new fleet of robots utilizes a combination of rectangular and cylindrical
solenoids. Incorporating a rectangular solenoid helps improve space efficiency,
allowing more room for other components such as a larger battery, as well as
lowering the robots center of gravity. The 2016 design of the kicker-chipper
system is mainly modeled after the design used by Tigers Mannheim [1]. The
main advantage of their design is that the kicker-chipper system fits within a
vertical range of approximately 1.25 inches, as compared to the RoboJackets’
2011 design which fit within 2.5 inches. It was adapted for the manufacturing
processes available to the RoboJackets. The final assembly for the kicker-chipper
can be seen on Figure 1. The wire used on the custom-made flat chipper solenoid
is currently a 22 AWG magnet wire with 150 turns. The same wire will be used
on the custom-made kicker solenoid, and the number of turns necessary will be
determined after future trials.

The rectangular solenoid went through many iterations in order to reach its
current design, which utilizes stock parts and water jetted acetal pieces in order
to improve manufacturability.



Fig. 1. Kicker-Chipper Assembly

1.2 Dribbler Damping

The damping system is designed to improve control over the ball. Catching a pass
with a damping system, consisting of a single spring, causes the ball to bounce
a significant distance, averaging about 0.530 inches from the robot, increasing
the time until a maneuver can be made. Adding foam to the damping system
helps dissipate more of the balls kinetic energy, decreasing the distance the ball
bounces to an average of 0.389 inches after receiving a pass. The foam is made
out of a pelican pick and pluck foam and it is placed within the coils of the spring,
thus contributing to the damping effect. Figure 2 and Figure 3 show the data for
the ball displacement over time. As can be seen from the data, the spring and
foam combination produces the least bounce-back distance on average, reducing
the time needed to recover from a pass.

1.3 Future Work

The driveplate design is critical to the performance of the robot, as the driveplate
bears all of the robots weight. The design shown in Figure3-Piece Driveplate De-
sign will have the advantage of being more space-efficient than the current one,
since it is made out of steel and requires less material to be structurally sound
under the given conditions. This design will also be better in terms of manufac-
turing speed, as it will requires only two operations: water jetting 2D profiles
and bending those pieces. Accuracy in metal bending will be achieved through
incorporating slots into the part profile, causing the stresses to concentrate on
the bending line.

2



Fig. 2. Ball Displacement over Time Without Foam

Fig. 3. Ball Displacement over Time With Foam

3



Fig. 4. Ball Displacement over Time With Foam

2 Electrical

The electrical team primarily focused on completing the 2016 set of boards. The
kicker board was improved to allow for data collection to support future en-
deavors. The housing for the breakbeam mechanism was completely redesigned
to improve robustness and accuracy. Additional firmware functionality was ex-
panded to support all hardware devices on the robot.

2.1 Kicker Board

On the 2013 kicker board, the kicking and chipping were controlled directly from
pins on the 2011 control board’s microcontroller. To improve versatility of the
interface, the dedicated lines were replaced with an SPI bus that connects with
an Atmel ATtiny 84A microcontroller on the 2015 Kicker Board [2]. Although
no additional functionality is gained from this change with the current imple-
mentation, the SPI link will allow for many hardware independent developments
to be implemented. Future improvements will see the addition of detailed data
collection and logging which will assist in debugging fault hardware.

2.2 Break Beam Boards

The standalone IR detector/emitter pair on the 2011 robot base was prone to
misalignment and disconnection. The 2015 drive base and electrical system saw
the development of a new board that exactly matches the contours of the robot’s
dribbler assembly. These custom boards provide a sturdy mount for the IR de-
tector and emitter pair. The boards chosen are only 0.6mm thick to reduce space
consumption and use black solder mask to reduce stray reflections around the
detector. In the event of malfunction or damage, the boards can be swapped with
the removal of only one screw. Four-wire flat flex cables are used to connect both
the emitter and detector boards to the control boards. The designs for both the
emitter and the detector boards are only one-sided PCBs. To reduce cost, every
break beam board was manufactured with an emitter on the front and a detector
on the back. During assembly, only one side of the board is populated.

4



Unique ID Chip The unique ID (UID) chip that is discussed in detail in the
Software section is located on the break beam board. This location was chosen
to house the UID chip as it was identified as the board with the lowest failure
rate. Each time a break beam board is swapped, it will be necessary to update
the configuration file within soccer with the new mapping of the UID chip to
the robot base.

Fig. 5. The new break beam boards, designed to fit exactly over the dribbler, are used
to provide mechanical support for the IR emitter and detectors.

2.3 Firmware

A new set of firmware was written for the on-board operations using the mbed
and CMSIS-RTOS libraries [3–5]. This allows for easier hardware upgrades and
optimizes resources for the on-board control loop. As a result, we have added an
on-board IMU that is incorporated into the control loop between radio packets.
This increases the previous control loop’s frequency from 60Hz to now 240Hz.

The robot’s FPGA was redesigned to include more robust motor fault detec-
tion. This information is retrieved by the control board and communicated to a
user via onboard LEDs for instant feedback that the robot is inoperable.

3 Software

The software team mainly worked on firmware and radio protocol features for the
2016 robots. Robot-specific unique identifiers and tuning packets were added in

5



order to support real-time updates of robot-specific motion control parameters.
In addition, new continuous integration software was developed in order to better
reflect development environments and lower time required to run the unit and
integration tests.

3.1 Radio Protocol

The 2016 radio protocol adds several new features and future extensibility to
fleet communications. The new protocol supports multiple packet types, allow-
ing different information schemas to coexist. Since these types are identified in
packet headers, we can amend or add information schemas in the future. Previ-
ously, all data was transmitted with unicast packets, thereby preventing common
information from being distributed to all robots efficiently. In addition to uni-
cast packets, the 2016 radio protocol supports broadcast packets - ones that are
received and processed by all robots connected to the base station.

Fig. 6. The most common packet, the control packet, is used to send motion commands.
The packet type ID, the first 4 bits, are common across all packets.

3.2 Wireless Firmware Installation

The 2008 and 2011 fleet of robots have supported over-the-air firmware updates
for many years. This feature greatly enhances the team’s ability to ensure all

6



robots are running the correct version of firmware. The 2016 fleet of robots
is currently flashed by connecting a single robot at a time to a computer via
USB. The MBED microcontroller requires firmware files to be stored on the
filesystem flash storage, which is separate from the flash storage used during
program execution. On boot, the mbed copies any modified firmware files from
the filesystem flash to the processor flash.

Control packets first signal one or more robots to enter a state capable of
receiving firmware updates. As firmware packets are received, the data is written
to the mbed’s filesystem flash. A checksum is used to ensure that firmware is
not corrupted in transit.

3.3 Per-Robot Tuning

To compensate for the unique and subtle construction differences between robots,
we now tune robot control parameters on an individual basis. In the past, mo-
tion control parameters were hard-coded into firmware and couldn’t be changed
in response to differences in mechanical bases. In the new protocol, bots are
addressed by unique identifiers mapped to specific robot bases so that tuned
parameters can be persisted. The extensible protocol supports live parameter
updates via tuning packets. When parameters need updates, the base station
sends a tuning packet and instead of a control packet. If multiple parameters
require updates, several rounds of tuning packets will be sent. Tuning is ex-
pected to take place during testing and initial robot startup, therefore the drop
in control resolution will not take place during or interfere with competition
performance. Both control and tuning packets are sent addressed over unicast.

3.4 Continuous Integration

A major part of any software project is quality assurance. In a large software
environment with many inexperienced programmers it is not uncommon for pro-
grammers to fail to properly test contributions. Our old continuous integration
(CI) system ran on Travis CI and fulfilled all the basic requirements of any
CI setup, such as automatically running tests, reporting on their results, and
publishing documentation. However, it had a few crucial issues. The builds on
this system took a long time, the results would be merged into a single indicator
(making it hard to debug issues), and the build system ran on outdated software,
requiring many workarounds.

Current Continuous Integration System While more complex, our new CI
system solves many issues present in the original setup. This was achieved with a
Docker-based framework to run our tests. Docker creates a lightweight, isolated
environment that is separated from the host system. With Docker, we were able
to cache our dependencies, as well as create an isolated Ubuntu 14.04 system,
cutting normal build times from about 30 minutes to under 5. In addition, this
framework keeps track of each tests pass/fail status and displays it as a green

7



check or a red x next to every commit on GitHub. The log of each test command
is also captured and uploaded to a link, which makes it easy to quickly pinpoint
the cause of failure. The ability to add individual isolated tests makes it simple
to add style and coverage checking to our CI setup as well.

Initially our new CI system was tied to our project, but we have since sep-
arated it out into its own repository to make it easy for others to use. Because
tests are run inside Docker, it makes it easy to reproduce any environment you
wish, even a ROS system, which would normally be more difficult to create CI
for. The CI framework can be found at https://github.com/jgkamat/docif.

Acknowledgements William Chen, Jacob Chesler, Carissa Fernandez, Tingzhi
He, Zhuo Ma, Roberto Medrano, Evan Peterson

References

1. Tigers Mannheim RoboCup SSL Team. Extended tdp for robocup 2015. Technical
report, Baden-Wuerttemberg Cooperative State University, 2015.

2. 2011 control board. https://github.com/RoboJackets/robocup-
pcb/tree/master/archive-pcb/control-2011-c. Accessed: 2016-01-26.

3. Cmsis-rtos api. http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html.
Accessed: 2016-01-27.

4. mbed api. https://developer.mbed.org/handbook/Homepage. Accessed: 2016-01-
27.

5. Robot firmware. https://github.com/RoboJackets/robocup-
software/tree/master/firmware/robot2015. Accessed: 2016-01-27.

8


