
RoboBulls 2016: RoboCup Small Size League

Muhaimen Shamsi, James Waugh, Fallon Williams, Anthony Ross, Martin

Llofriu, Nikki Hudson, Carlton Drew, Alex Fyffe, Rachel Porter, and Alfredo

Weitzenfeld

{muhaimen, waugh2, fwilliams3, anthonyross, mllofriualon, nicolehudson, carlton1, afyffe1, rporter,

aweitzenfeld}@mail.usf.edu

Bio-Robotics Lab, College of Engineering, University of South Florida

Tampa FL, USA

Abstract. In this paper we present the design and implementation of our Small

Sized League RoboCup Team – RoboBulls. We attempt to explain every aspect

of our robots and AI system in as much detail as possible. We focus on our

overall software architecture, drive system, kicker, and dribbler.

Keywords: Small Size League · RoboCup · Autonomous · Artificial

Intelligence

1 Introduction

RoboCup [1] is an international joint project to promote AI, robotics, and related fields. In the

Small Size League, two teams of up to 6 robots play soccer on a carpeted field. Fig. 1. shows a

diagram of the playing field and computer setup.

Fig. 1. Typical architecture of a Small Size League team

Aerial cameras send video signals to a vision system computer that computes robots and ball

positioning on the field. This information is then passed to an AI system that produces control

commands sent to the robots via wireless communication. A referee box indicating the state of the

game provides additional information.

The system architecture of our team in the Small Size League (SSL) consists of four main

components: (a) vision system (b) artificial intelligence (c) robots and (d) referee:

a) The vision system digitally processes video signals from the cameras mounted on top of the

field. It computes the position of the ball and robots on the field, as well as the orientation of

the robots. Resulting information is transmitted back to the AI system. We use the RoboCup

SSL standard vision system [3].

b) The artificial intelligence system receives the information from the vision system and makes

strategic decisions. The actions of our team are based in a set of roles (goalkeeper, defense,

forward) that exhibit behaviors according to the current state of the game. To avoid collision

with robots of the opposite team, we use a Fast Path Planning Algorithm [2]. AI decisions

are converted to commands that are sent back to the robots via a wireless link.

c) The robots execute commands sent from the AI system by generating mechanical actions.

This cycle is repeated 55 times per second.

d) The referee can communicate additional decisions (penalties, goal scored, start of the game,

etc.) by sending a set of predefined commands to the AI system.

2 Vision

The vision system is the only source of feedback in the system architecture. If data returned by the

vision system is inaccurate or incorrect, the overall performance of the team will be severely

affected. Since a few years ago, SSL has a standardized and efficient vision system, which

addresses this issue: the RoboCup Small Sized League Shared Vision System [3]. The official

system for RoboCup SSL 2016 is implemented using four AVT Stingray F046C cameras mounted

above a double-size field (8090mm x 6050mm).

To resolve the issue of false detection of robots near the edge of the field, i.e., when a robot with

an ID pattern that is not actually in use is detected, we created a filter in our client that only adds

robots to our game-model if they are detected for at least 25 frames out of 50 consecutive frames.

3 Artificial Intelligence

The RoboBulls 2016 software hierarchy is divided into various independent modules. We will

present an overview each software module and explain their interconnections. The main modules

are Communication, GameModel, Strategy, Behavior, Skill, and Movement. Fig. 2. Shos the main

components and their interaction.

3.1 Communication

This module manages communication to and from external components: VisionComm receives

information from the vision system, RefComm receives information from the referee box, and

RobComm sends output to the robots.

VisionComm receives the standardized information of all objects on the field including ID, X and

Y coordinates, and orientation. RefComm retrieves the state of the game from the referee box.

Currently, RefComm and VisionComm run on their own threads, without synchronization. A cycle

of the game consists of VisionComm receiving and parsing a new packet that is then read by the

GameModel (See section 3.2) to generate a Strategy (See section 3.3).

The Communication module is important because it needs to receive and report accurate

information. To do so, we verify three main criteria for storing a detection frame: 1) The reported

SSL vision system tolerance is above a certain threshold, 0.8 for robots and 0.6 for the ball; 2) The

detection reported by the camera matches the correct object's position, currently tested in our lab

with our two-camera system, where Camera 0 should report objects only with x < 0, and Camera 1

with objects only with x >= 0. We plan to test our system using the full four-camera SSL vision

system before the competition; and 3) Detected robots are included in the system only if they have

been seen as a valid detection for at least 25 out of every 50 frames received.

Fig. 2. The main system modules and their interactions.

3.2 GameModel

The GameModel is the "heart of the system". It is so-called because it centralizes information from

all other components. The rest of the system operates off the information contained in the

GameModel, i.e. it can be seen as a “cache” of the state of the actual soccer game. Information

contained in the GameModel includes the ball's position and velocity, robot positions, robot IDs,

robot orientations, and the current game state. Only one instance of the GameModel exists during

runtime.

3.3 Strategy

We refer to Strategy as a high-level component that coordinates individual robot Behaviors,

analogous to a team coach on the side of the field shouting commands to players. A single active

strategy is chosen by the StrategyController. The strategy takes into consideration the state of the

game from the RefBox. Our system has an individual Strategy, i.e. method to assign robot-specific

behaviors, for each state of the Referee Box. Strategies are implemented via polymorphism with

two main functions--assignBeh() and update(). The former runs once upon receiving a new

command; the latter runs continuously until a new Strategy is assigned.

3.4 Behavior and Skill

Once a Strategy is chosen by the StrategyController, Behaviors are assigned to individual robots.

A Behavior is an ordered set of skills that are performed to complete a high-level action—such as

passing, scoring, moving, defending, or attacking. Typically implemented as a finite state

machine, the Behavior is a member of the Robot class itself, and achieves functionality by using

combinations of Skills. Skills are limited individual robot actions such as kicking, turning,

stopping, or dribbling. Another important function of a Behavior is the perform() function applied

to any robot. Skills and Behaviors achieve robot motion by interacting with the Movement module.

3.5 Movement

Movement is referred to the lowest level in our system component hierarchy. Movement contains

omni-drive and differential movement algorithms, obstacle avoidance, and robot collision

resolution. Any movement on any robot related to a base class called Move. Our system has been

designed to run different types of robots, including differential and three-wheel holonomic robots,

as explained in the Development section. The abstraction keeps the robot type invisible to the

programmer.

3.6 Obstacle Avoidance

Obstacle avoidance is achieved using a Fast Path Planning Algorithm specifically designed for

SSL [2]. This algorithm divides a straight-line blocked path into multiple straight-line unblocked

segments, which are followed in a queue. To resolve collisions between robots, a sub-module

called MovementCollisions keeps track of distances and orientations of each robot. If robots are

too close and are facing each other in a harmful manner, all movement calculations are ignored

and negative velocities are sent to the wheels to move the robots backwards. A new path is then

planned. This approach has shown to be an effective method for avoiding collisions and

deadlocks, where robots keep trying to traverse a blocked path. Fig. 3. provides schematics of the

obstacle avoidance component.

Fig. 3. Robot-Robot obstacle avoidance component.

3.7 Graphical User Interface (GUI)

We have developed a GUI using the Qt framework [4] as shown in Fig. 4. The GUI monitors all

robots and the strategies and behaviors assigned to our team robots. The GUI shows in real time

the paths generated by the Movement layer and allows us during testing or debugging to override

it, in order to manually control robot movement using the keyboard or via remote control.

Additioanlly, this control is useful during testing or debugging to position robots back into the

field and to quickly stop unwanted behaviors.

Fig. 4. GUI monitors robot behavior and game state.

4 Robots

This section describes the current robot design for RoboCup 2016 competition and our planned

improvements to the robots. Fig. 5. shows four of our second generation RoboBulls SSL robots.

The robots are currently equipped with kickers and dribblers. Chip-kicker are not currently

planned for 2016 due primarily to limited space inside the robot.

Fig. 5. 2016 RoboBulls SSL robots.

4.1 Components

The current robots are identical in their design. They have been constructed with custom

aluminum plates and brackets made to firmly attach the motors. The electrical components are

organized in a housing compartment designed in SOLIDWORKS and printed by MakerBot 3D

printers at local USF facilities. This ensures our electrical components are positioned safely and

accessibly inside the robot. Table 1 provides a detailed list of robot internal components.

Table 1. List of electrical components per robot

Component Number Function

Maxon EC45 Brushless DC

Motors with Spur Gearhead
4

Spin omni-wheels to propel the robot in any

direction

ESCON 36/3 Servo

Controllers
4 Closed loop speed control of motors

Arduino Mega 2650 1
Receive commands over Xbee radio and generate

various actuator signals

4S Lipo 20C 3000mAh 1 Supply various components with power

Voltage Alarm 1 Sound alarm if battery voltage is too low

DC-DC Step-Up Converter 1 Provide 250VDC source to charge Capacitor

Solenoid And Plunger 1 Kick the ball along the ground

Dribbler Frame, Drum, and

12V DC Motor
1 Hold the ball close to the robot while moving

250 VDC 2200uF Capacitor 1 Provide high-power discharge to solenoid

Voltage Regulator 2
Provide appropriate voltage for Arduino and

dribbler

PCB 1
Routes power to the dribbler, solenoid, and

capacitor - controlled by the Arduino Mega

4.2 Drive System

We modified the original Maxon motors by removing the optical encoders which were attached to

their back since they were made redundant by new servo-controllers from Maxon Motors –

ESCON 36/3 (part number 336287). These servo-controllers are able to accept Hall Sensor

feedback from the motors in order to determine their speed, and already come with built-in closed

loop speed control. The servo-controllers are also capable of auto-tuning through a free program

provided by Maxon Motors called ESCON Studio. Overall the incorporation of the new servo-

controllers has improved the motion of our robots as they provide much higher starting torque

when compared to the use of optical-encoders. The Hall-effect sensors allow the servo-controllers

to read the position of the rotor so that the angle between the rotor flux and the stator flux can be

kept as close to 90° as possible [5]. The controllers have built-in over-current and over-voltage

protection to prevent damage to the motors during stalls.

4.3 Kicker

The kicker consists of a hand-wound solenoid mounted onto the base of the robot. It is powered by

a 250V 2200uF capacitor, which is charged by a step-up converter at 200V. Two 5V relays

controlled by the Arduino Mega act as switches to control the charging and discharging of the

capacitor. A kick is actuated by a 15ms pulse of current at 200V from the capacitor to the

solenoid. This allows for a maximum kick range of approximately 15 meters. The software limits

the kicker to 1 kick per 6 seconds to prevent the solenoid from overheating, and a rubber-band

hooked to the back of the arm retracts it after each kick.

4.4 Dribbler

The dribbler consists of a 3D printed frame that houses a 12V DC motor (1030rpm free-run, 3.2

kg-cm torque) and a roller that makes contact with the ball. It is attached to the body of the robot

by a free moving hinge so that the frame can rotate backwards by a maximum of 4 degrees. The

back of the frame is padded with compressible material to absorb impacts from the ball.

The roller is made from Lego parts since the Lego wheels provide a smooth, rubber surface for

contact with the ball. We use 4 Lego wheels with gaps between them for the ball to move into,

which prevents lateral motion. The rotation is transferred between the motor and the roller by 2

spur gears; one is a small Lego gear and the other is a 3D-printed gear sized appropriately to fit the

frame.

4.5 Serial Communication

Communication between the robots and the computer running the AI system is established using

XBee radios at a baud rate of 57600bps. This rate is used to take advantage of the high throughput

from the vision system, which operates at over 50 fps, as higher update rates result in smoother

motion with less over-shoot. Each packet has six 10-byte arrays for a packet size of 60 bytes. This

allows 6 robots to be controlled simultaneously. Byte arrays begin and end with special marker

characters as shown below to prevent the execution of corrupt commands:

char(250) ID Wheel 1 Wheel 2 Wheel 3 Wheel 4 Kick Unused Dribble char(255)

4.6 Power

Each robot is powered by a pack of 4S 20C LiPo (Lithium Polymer) batteries of 3000mAh

capacity. The 15V pack powers the Arduino, ESCON Servo controllers, the dribbler, and the step-

up converter in parallel. One parallel connection is regulated down to 8V for the Arduino Mega

2650 and another is regulated down to 12V for the dribbler motor.

4.7 Planned Improvements

Development of smaller gearboxes: Our current motors come with gearboxes that occupy a

majority of the space on the chassis. This prevents us from housing a chip kicker since there is

barely enough space to fit a normal kicker. We plan to replace the gearboxes with a transmission

mechanism built into the omni-wheels. We decided to forego this for the 2016 competitions due to

a lack of time and manufacturing ability.

Increased kick power: While the current kicker design is able to propel the ball down the length of

the field, the velocity of the ball is relatively slow. We plan to improve this by modifying the

duration of the impulse given to the solenoid, using higher voltages, testing a new improved

solenoid, and test new capacitors that provide further current.

Chip-kicker: We are in the process of designing a chip kicker that will fit on the chassis once the

large gearboxes have been removed.

5 Involvement

The USF RoboBulls team members participate annually at the USF College of Engineering Expo.

In 2015 we hosted several hundred K-12 students at our lab where they could build Lego NXT

robots to play soccer and run it under our SSL framework. The event and experience was very

successful with a surprising number of different designs that work very well. The children were

able to get hands-on experience in building robots and received encouragement and help from our

team members.

Fig. 6. RoboBulls participation in the USF College of Engineering Expo 2015

For the 2016 Expo we plan on having the students remotely control our SSL robots for 2v2 games

of robot soccer. This will help us test the stability of our robots for the 2016 RoboCup

tournaments.

6 Conclusion

We presented in the TDP the software and hardware overview of the RoboBulls SSL 2016 team.

Robots are able to achieve fast holonomic omni-directional motion, ball handling, and kicking.

The control software has been developed and tested during full games in addition to using the

grSim [8] simulator. We described the different components involved in the processing of vision,

network communications, world modeling, high-level strategies, low-level behaviors and skills,

communication, kicking and motor control.

Short-term future work consists of improving the current robots for the 2016 competition,

including improving the kicking power. Long-term future work includes redesigning the robot

wheels with gearboxes built into the omni-wheels and developing a chip-kicker.

More information can be found at www.usfrobobulls.org.

Our Qualification Video can be found at: https://www.youtube.com/watch?v=iRya-3IAA-w

7 Acknowledgements

This work is supported in part by the USF Student Government, the Bio-Robotics Lab at USF and

the NSF grant #1117303 entitled “Investigations of the Role of Dorsal versus Ventral Place and

Grid Cells during Multi-Scale Spatial Navigation in Rats and Robots” that supports students

through the REU grant in addition to the construction of robotics infrastructure available also for

research experiments. We would like to deeply thank Juan Calderon and the STOx's small size

league team of Santo Tomas University for their help and advice.

References

1. “Small Size Robot League - start” [Online]. Available: http://robocupssl.cpe.ku.ac.th/.

[Accessed: 31-Jan-2016].

2. S. Rodriguez, E. Rojas, K. Perez, J. L. Jimenez, C. Quintero, and J. Calderón, “Fast Path

Planning Algorithm for the RoboCup Small Size League,” 2014.

3. Zickler, Stefan, et al. "SSL-vision: The shared vision system for the RoboCup Small Size

League." RoboCup 2009: Robot Soccer World Cup XIII. Springer Berlin Heidelberg, 2010.

425-436.

4. “Qt- The IDE” [Online]. Available: http://www.qt.io/ide/. [Accessed: 31-Jan-2016].

5. Hang, Chang C., Karl Johan Åström, and Weng Khuen Ho. "Refinements of the Ziegler–

Nichols tuning formula." IEE Proceedings D (Control Theory and Applications). Vol. 138.

No. 2. IET Digital Library, 1991.

6. Ahlawat, Pranay, Cliff Gaw, Joseph Golden, Karan Khera, Anthony Marino, Mike McCabe,

Aaron Nathan, and Nathan Pagel. "Robocup Systems Engineering Project 2004." Cornell

Robocup - Documentation. Cornell University, 5 Dec. 2004. Web. 09 Mar. 2015.

7. Monajjemi, Valiallah, Ali Koochakzadeh, and Saeed Shiry Ghidary. "grsim–robocup small

size robot soccer simulator." RoboCup 2011: Robot Soccer World Cup XV. Springer Berlin

Heidelberg, 2012. 450-460.

