
RoboBulls 2016: RoboCup Small Size League 

 

Muhaimen Shamsi, James Waugh, Fallon Williams, Anthony Ross, Martin 

Llofriu, Nikki Hudson, Carlton Drew, Alex Fyffe, Rachel Porter,  and Alfredo 

Weitzenfeld 

{muhaimen, waugh2, fwilliams3, anthonyross, mllofriualon, nicolehudson, carlton1, afyffe1, rporter, 

aweitzenfeld}@mail.usf.edu 

Bio-Robotics Lab, College of Engineering, University of South Florida 

Tampa FL, USA 

 

Abstract. In this paper we present the design and implementation of our Small 

Sized League RoboCup Team – RoboBulls. We attempt to explain every aspect 

of our robots and AI system in as much detail as possible. We focus on our 

overall software architecture, drive system, kicker, and dribbler.  
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1 Introduction 

RoboCup [1] is an international joint project to promote AI, robotics, and related fields. In the 

Small Size League, two teams of up to 6 robots play soccer on a carpeted field. Fig. 1. shows a 

diagram of the playing field and computer setup.  

 

 

 

Fig. 1. Typical architecture of a Small Size League team 

 

 



 

Aerial cameras send video signals to a vision system computer that computes robots and ball 

positioning on the field. This information is then passed to an AI system that produces control 

commands sent to the robots via wireless communication. A referee box indicating the state of the 

game provides additional information. 

The system architecture of our team in the Small Size League (SSL) consists of four main 

components: (a) vision system (b) artificial intelligence (c) robots and (d) referee: 

a) The vision system digitally processes video signals from the cameras mounted on top of the 

field. It computes the position of the ball and robots on the field, as well as the orientation of 

the robots. Resulting information is transmitted back to the AI system. We use the RoboCup 

SSL standard vision system [3]. 

b) The artificial intelligence system receives the information from the vision system and makes 

strategic decisions. The actions of our team are based in a set of roles (goalkeeper, defense, 

forward) that exhibit behaviors according to the current state of the game. To avoid collision 

with robots of the opposite team, we use a Fast Path Planning Algorithm [2]. AI decisions 

are converted to commands that are sent back to the robots via a wireless link.  

c) The robots execute commands sent from the AI system by generating mechanical actions. 

This cycle is repeated 55 times per second.  

d) The referee can communicate additional decisions (penalties, goal scored, start of the game, 

etc.) by sending a set of predefined commands to the AI system.  

2 Vision 

The vision system is the only source of feedback in the system architecture. If data returned by the 

vision system is inaccurate or incorrect, the overall performance of the team will be severely 

affected. Since a few years ago, SSL has a standardized and efficient vision system, which 

addresses this issue: the RoboCup Small Sized League Shared Vision System [3]. The official 

system for RoboCup SSL 2016 is implemented using four AVT Stingray F046C cameras mounted 

above a double-size field (8090mm x 6050mm). 

To resolve the issue of false detection of robots near the edge of the field, i.e., when a robot with 

an ID pattern that is not actually in use is detected, we created a filter in our client that only adds 

robots to our game-model if they are detected for at least 25 frames out of 50 consecutive frames.  

3 Artificial Intelligence 

The RoboBulls 2016 software hierarchy is divided into various independent modules. We will 

present an overview each software module and explain their interconnections. The main modules 

are Communication, GameModel, Strategy, Behavior, Skill, and Movement. Fig. 2. Shos the main 

components and their interaction. 

3.1 Communication 

This module manages communication to and from external components: VisionComm receives 

information from the vision system, RefComm receives information from the referee box, and 

RobComm sends output to the robots. 

VisionComm receives the standardized information of all objects on the field including ID, X and 

Y coordinates, and orientation. RefComm retrieves the state of the game from the referee box. 

Currently, RefComm and VisionComm run on their own threads, without synchronization. A cycle 

of the game consists of VisionComm receiving and parsing a new packet that is then read by the 

GameModel (See section 3.2) to generate a Strategy (See section 3.3). 



The Communication module is important because it needs to receive and report accurate 

information. To do so, we verify three main criteria for storing a detection frame: 1) The reported 

SSL vision system tolerance is above a certain threshold, 0.8 for robots and 0.6 for the ball; 2) The 

detection reported by the camera matches the correct object's position, currently tested in our lab 

with our two-camera system, where Camera 0 should report objects only with x < 0, and Camera 1 

with objects only with x >= 0. We plan to test our system using the full four-camera SSL vision 

system before the competition; and 3) Detected robots are included in the system only if they have 

been seen as a valid detection for at least 25 out of every 50 frames received. 

 

Fig. 2. The main system modules and their interactions. 

3.2 GameModel 

The GameModel is the "heart of the system". It is so-called because it centralizes information from 

all other components. The rest of the system operates off the information contained in the 

GameModel, i.e. it can be seen as a “cache” of the state of the actual soccer game. Information 

contained in the GameModel includes the ball's position and velocity, robot positions, robot IDs, 

robot orientations, and the current game state. Only one instance of the GameModel exists during 

runtime. 

3.3 Strategy 

We refer to Strategy as a high-level component that coordinates individual robot Behaviors, 

analogous to a team coach on the side of the field shouting commands to players. A single active 



strategy is chosen by the StrategyController. The strategy takes into consideration the state of the 

game from the RefBox. Our system has an individual Strategy, i.e. method to assign robot-specific 

behaviors, for each state of the Referee Box. Strategies are implemented via polymorphism with 

two main functions--assignBeh() and update(). The former runs once upon receiving a new 

command; the latter runs continuously until a new Strategy is assigned. 

3.4 Behavior and Skill 

Once a Strategy is chosen by the StrategyController, Behaviors are assigned to individual robots. 

A Behavior is an ordered set of skills that are performed to complete a high-level action—such as 

passing, scoring, moving, defending, or attacking. Typically implemented as a finite state 

machine, the Behavior is a member of the Robot class itself, and achieves functionality by using 

combinations of Skills. Skills are limited individual robot actions such as kicking, turning, 

stopping, or dribbling. Another important function of a Behavior is the perform() function applied 

to any robot. Skills and Behaviors achieve robot motion by interacting with the Movement module. 

3.5 Movement 

Movement is referred to the lowest level in our system component hierarchy. Movement contains 

omni-drive and differential movement algorithms, obstacle avoidance, and robot collision 

resolution. Any movement on any robot related to a base class called Move. Our system has been 

designed to run different types of robots, including differential and three-wheel holonomic robots, 

as explained in the Development section. The abstraction keeps the robot type invisible to the 

programmer. 

3.6 Obstacle Avoidance 

Obstacle avoidance is achieved using a Fast Path Planning Algorithm specifically designed for 

SSL [2]. This algorithm divides a straight-line blocked path into multiple straight-line unblocked 

segments, which are followed in a queue. To resolve collisions between robots, a sub-module 

called MovementCollisions keeps track of distances and orientations of each robot. If robots are 

too close and are facing each other in a harmful manner, all movement calculations are ignored 

and negative velocities are sent to the wheels to move the robots backwards. A new path is then 

planned. This approach has shown to be an effective method for avoiding collisions and 

deadlocks, where robots keep trying to traverse a blocked path. Fig. 3. provides schematics of the 

obstacle avoidance component. 

 

Fig. 3. Robot-Robot obstacle avoidance component. 

 



3.7 Graphical User Interface (GUI) 

We have developed a GUI using the Qt framework [4] as shown in Fig. 4. The GUI monitors all 

robots and the strategies and behaviors assigned to our team robots. The GUI shows in real time 

the paths generated by the Movement layer and allows us during testing or debugging to override 

it, in order to manually control robot movement using the keyboard or via remote control. 

Additioanlly, this control is useful during testing or debugging to position robots back into the 

field and to quickly stop unwanted behaviors. 

 

Fig. 4. GUI monitors robot behavior and game state. 

4 Robots 

This section describes the current robot design for RoboCup 2016 competition and our planned 

improvements to the robots. Fig. 5.  shows four of our second generation RoboBulls SSL robots. 

The robots are currently equipped with kickers and dribblers. Chip-kicker are not currently 

planned for 2016 due primarily to limited space inside the robot. 

 

Fig. 5. 2016 RoboBulls SSL robots. 

4.1 Components 

The current robots are identical in their design. They have been constructed with custom 

aluminum plates and brackets made to firmly attach the motors. The electrical components are 

organized in a housing compartment designed in SOLIDWORKS and printed by MakerBot 3D 



printers at local USF facilities. This ensures our electrical components are positioned safely and 

accessibly inside the robot. Table 1 provides a detailed list of robot internal components. 

Table 1. List of electrical components per robot 

Component Number Function 

Maxon EC45 Brushless DC 

Motors with Spur Gearhead 
4 

Spin omni-wheels to propel the robot in any 

direction 

ESCON 36/3 Servo 

Controllers 
4 Closed loop speed control of motors 

Arduino Mega 2650 1 
Receive commands over Xbee radio and generate 

various actuator signals 

4S Lipo 20C 3000mAh 1 Supply various components with power 

Voltage Alarm 1 Sound alarm if battery voltage is too low 

DC-DC Step-Up Converter 1 Provide 250VDC source to charge Capacitor 

Solenoid And Plunger 1 Kick the ball along the ground 

Dribbler Frame, Drum, and 

12V DC Motor 
1 Hold the ball close to the robot while moving 

250 VDC 2200uF Capacitor 1 Provide high-power discharge to solenoid 

Voltage Regulator 2 
Provide appropriate voltage for Arduino and 

dribbler 

PCB 1 
Routes power to the dribbler, solenoid, and 

capacitor - controlled by the Arduino Mega 

 

4.2 Drive System 

We modified the original Maxon motors by removing the optical encoders which were attached to 

their back since they were made redundant by new servo-controllers from Maxon Motors – 

ESCON 36/3 (part number 336287). These servo-controllers are able to accept Hall Sensor 

feedback from the motors in order to determine their speed, and already come with built-in closed 

loop speed control. The servo-controllers are also capable of auto-tuning through a free program 

provided by Maxon Motors called ESCON Studio. Overall the incorporation of the new servo-

controllers has improved the motion of our robots as they provide much higher starting torque 

when compared to the use of optical-encoders. The Hall-effect sensors allow the servo-controllers 

to read the position of the rotor so that the angle between the rotor flux and the stator flux can be 

kept as close to 90° as possible [5]. The controllers have built-in over-current and over-voltage 

protection to prevent damage to the motors during stalls. 

 

4.3 Kicker 

The kicker consists of a hand-wound solenoid mounted onto the base of the robot. It is powered by 

a 250V 2200uF capacitor, which is charged by a step-up converter at 200V. Two 5V relays 

controlled by the Arduino Mega act as switches to control the charging and discharging of the 

capacitor. A kick is actuated by a 15ms pulse of current at 200V from the capacitor to the 

solenoid. This allows for a maximum kick range of approximately 15 meters. The software limits 

the kicker to 1 kick per 6 seconds to prevent the solenoid from overheating, and a rubber-band 

hooked to the back of the arm retracts it after each kick. 

 

4.4 Dribbler 

The dribbler consists of a 3D printed frame that houses a 12V DC motor (1030rpm free-run, 3.2 

kg-cm torque) and a roller that makes contact with the ball. It is attached to the body of the robot 

by a free moving hinge so that the frame can rotate backwards by a maximum of 4 degrees. The 

back of the frame is padded with compressible material to absorb impacts from the ball. 

 

The roller is made from Lego parts since the Lego wheels provide a smooth, rubber surface for 

contact with the ball. We use 4 Lego wheels with gaps between them for the ball to move into, 



which prevents lateral motion. The rotation is transferred between the motor and the roller by 2 

spur gears; one is a small Lego gear and the other is a 3D-printed gear sized appropriately to fit the 

frame. 

 

4.5 Serial Communication 

Communication between the robots and the computer running the AI system is established using 

XBee radios at a baud rate of 57600bps. This rate is used to take advantage of the high throughput 

from the vision system, which operates at over 50 fps, as higher update rates result in smoother 

motion with less over-shoot. Each packet has six 10-byte arrays for a packet size of 60 bytes. This 

allows 6 robots to be controlled simultaneously. Byte arrays begin and end with special marker 

characters as shown below to prevent the execution of corrupt commands: 

 

char(250) ID Wheel 1 Wheel 2 Wheel 3 Wheel 4 Kick Unused Dribble char(255) 

 

4.6 Power 

Each robot is powered by a pack of 4S 20C LiPo (Lithium Polymer) batteries of 3000mAh 

capacity. The 15V pack powers the Arduino, ESCON Servo controllers, the dribbler, and the step-

up converter in parallel. One parallel connection is regulated down to 8V for the Arduino Mega 

2650 and another is regulated down to 12V for the dribbler motor.  

4.7 Planned Improvements 

Development of smaller gearboxes: Our current motors come with gearboxes that occupy a 

majority of the space on the chassis. This prevents us from housing a chip kicker since there is 

barely enough space to fit a normal kicker. We plan to replace the gearboxes with a transmission 

mechanism built into the omni-wheels. We decided to forego this for the 2016 competitions due to 

a lack of time and manufacturing ability. 

Increased kick power: While the current kicker design is able to propel the ball down the length of 

the field, the velocity of the ball is relatively slow. We plan to improve this by modifying the 

duration of the impulse given to the solenoid, using higher voltages, testing a new improved 

solenoid, and test new capacitors that provide further current.  

Chip-kicker: We are in the process of designing a chip kicker that will fit on the chassis once the 

large gearboxes have been removed.  

5 Involvement 

The USF RoboBulls team members participate annually at the USF College of Engineering Expo. 

In 2015 we hosted several hundred K-12 students at our lab where they could build Lego NXT 

robots to play soccer and run it under our SSL framework. The event and experience was very 

successful with a surprising number of different designs that work very well. The children were 

able to get hands-on experience in building robots and received encouragement and help from our 

team members. 



 

Fig. 6. RoboBulls participation in the USF College of Engineering Expo 2015 

For the 2016 Expo we plan on having the students remotely control our SSL robots for 2v2 games 

of robot soccer. This will help us test the stability of our robots for the 2016 RoboCup 

tournaments. 

6 Conclusion 

We presented in the TDP the software and hardware overview of the RoboBulls SSL 2016 team. 

Robots are able to achieve fast holonomic omni-directional motion, ball handling, and kicking. 

The control software has been developed and tested during full games in addition to using the 

grSim [8] simulator. We described the different components involved in the processing of vision, 

network communications, world modeling, high-level strategies, low-level behaviors and skills, 

communication, kicking and motor control. 

Short-term future work consists of improving the current robots for the 2016 competition, 

including improving the kicking power. Long-term future work includes redesigning the robot 

wheels with gearboxes built into the omni-wheels and developing a chip-kicker. 

More information can be found at www.usfrobobulls.org. 

Our Qualification Video can be found at: https://www.youtube.com/watch?v=iRya-3IAA-w 
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