
NEUIslanders 2015 Team Description Paper

Prof. Dr. Rahib H.ABIYEV1, Assist. Prof. Dr. Irfan GUNSEL2, Nurullah AKKAYA1, Murat
ARSLAN1, Mustafa ARICI1, Ahmet CAGMAN1, Seyhan HUSEYIN1, Fatih EMREM3,

Gorkem SAY3, Ersin AYTAC4

1Department of Computer Engineering
2Chairman of the Board of Trustees

3Department of Electrical and Electronic Engineering
4Department of Mechanical Engineering
Near East University, Lefkosa, TRNC

Abstract. This paper presents the 2015 design of NEUIslanders robotic team of
small size league in RoboCup 2015. This year, we focused on all parts of our
robots. Improvements include mechanical design, electronic design and
software design. Especially, we achieved mechanical and electronic
improvements.

1. Introduction

NEUIslanders is an interdisciplinary team of graduate students at the Near East
University. The has been taking regular place in RoboCup events since 2012. This
paper will outline the progress of our new generation robots since the last RoboCup.

In section 2 we give the information of our electronics design. This year we are giving
all the parts that we are using in our robots in detail. In section 3 we explain how our
mechanics work and their materials. And in section 4 we give details about our
decision making process in our software.

Table 1. Robot Specifications

Fig. 1. Front View of NEUIslanders SSL Robot

NEU ISLANDERS Robot Specifications

Dimensions φ178x145mm

Weight 3200gr

Driving Motors Maxon EC-45 Flat 30Watt

Driving Gear Ratio 72:20

Dribbler Motor Maxon EC-16 15Watt

Dribbler Gear Ratio 24:48

Kick Speed Up to 8m/s (electronically limited)

Communication XBEE 1mW

2. Electronic Design

The electronic circuits of robots include main control units of wheel’s motors,
communication system, dribbler’s motor and kicking parts. This year, we achieved a
lot of improvements on electronic design. These changes include main CPU, kicking
circuit, motors, motor drivers, dribbler motor drivers. We made these improvements
because we faced some problems.

Fig. 2. Main Circuit Board

2.1. Battery

Last year, we used two 2650 mAh high discharge 35-70C lithium polymer batteries
and all of them connected series to each other. This year, we have got new batteries.
They are 12.6V 1800 mAh 25C lithium polymer batteries. All batteries are placed in
li-po safes for fire or explosion accidents. we decreased weight of our new generation
robots so we determined new specification of our batteries. Since we have observed
that we had more power than we needed for one game in RoboCup for weight
reduction purposes we made this decision.

2.2. Main CPU

One of the major changes is the main CPU. Since we had started to RoboCup, we
changed our main CPU first time. We faced some problems so we decided to change.
Our old CPU was ATmega328p and we started to use Atmel SAM3X8E ARM Cortex-
M3. In ATmega328p, there are 14 digital input/output pins, 6 analog inputs, 16 Mhz
clock speed so we didn’t have enough digital pin and analog pin that was the major
problem, second major problem was the Atmega didn’t run our software anymore,
other problem was transmitting and receiving signals. There are a lot of transmitting
and receiving signals so our ATmega is too slow to process all signals and it misses
some of them. In the new CPU, there are 54 digital input/output pins ,12 analog
inputs, 84 Mhz clock speed and 2 DAC. We aim to overcome all problems and
achieve maximum performance with new microprocessor Atmel SAM3X8E ARM
Cortex-M3.

2.3. Motors&Motors Drivers

In our new generations robots we also change our motors and motor drivers. Old
motors was 36V 30 Watts 3 phase brushless DC Maxon Ec-45 Flat motors. In this
year, we use 30 Watts 3 phase brushless DC Maxon Ec-45 flat with MILE-Encoder.

For control more efficient, we selected this motor. The MILE encoder uses an
inductive angle measurement system to generate incremental quadrature output
signals. The encoder is designed for highest robustness in application. It can be
operated in the open environment of an EC flat motor and is equipped with additional
ESD protection circuitry. Due to the robustness of the MILE technology in terms of
magnetic interference it was possible to integrate the encoder into the flat motor with
minimal change dimensions with respect to a motor with our encoder. Depending on
motor, we choose a motor driver. It’s an EPOS2 24/2 digital positioning controller,
2A, 9-14 Vdc. Maxon motor control’s EPOS2 24/2 is a small-sized, full digital smart
motion control unit. Due to its flexible and high efficient power stage, the EPOS2
24/2 drives brushed DC motors with digital encoder as well as brushless EC motors
with digital Hall sensors and encoder. The sinusoidal current commutation by space
vector control offers to drive brushless EC motors with minimal torque ripple and lod
noise. The integrated position, velocity and current control functionally allows
sophisticated positioning application.

For control more efficient, we used AD5061 16-Bit DAC. The AD5061 is a low
power, single 16-bit buffered voltage-out DAC that operates from a single 2.7 V to
5.5 V supply. The DAC will be driven by a micro-controller. The DAC will receive
the input data code and convert the data code into current outputs to appropriate
motor driven circuitry. The motor driver circuit can be implemented in several ways.

During the operation, the motor with an encoder sends velocity and position signals to
the micro-controller. Depending on the encoder these signals may also include an
index pulse signal. The micro controller then adjusts by changing the data codes sent
to the DAC. The DAC, just like the ADC and the operational amplifier, plays a key
role in a myriad of applications. If one considers the ubiquitous op amp as the “glue”
between mixed-signal components, then it can be concluded that the three central
components on a signal path are the op amp, ADC, and DAC. As the signal passes
from the analog domain to digital and back again, the DAC could be considered the
dénouement of a circuit. The signal, having done its work, returns to the analog
domain. DAC’s necessary to use a galvanically-isolated interface to protect and
isolate the controlling circuitry from any hazardous common-mode voltages that may
occur in the area where the DAC is functioning. That’s why we used ADuM series
digital isolator in circuit for DAC.

For dribbler motor, we use EC 16 brushless 30 Watt sensorless motors and for driver,
we use ESCON Module 50/4 EC-2 4-Q Servo controller for sensorless EC motors.

Fig. 3. Digital Isolators and DAC’s Schematics

2.4. Kicking Circuit

We also changed our kicker circuit. We used high speed MOSFET IRFP450 to charge
our 2200uF. We give 30 kHz PWM to MOSFET. For drive a MOSFET we use
IR2106 MOSFET Driver. It provides high speed, high current MOSFET drive
capability for efficient switching conversion in dc to dc converter. It adds over
temperature and prevision enabled protection features to enhance overall system
reliability and performance. MOSFET boosts voltage up and charge the capacitor to

240Vdc. To stop capacitor charging, we designed our comparator. In comparator part
we used a 10 Mohm and 68 Kohm. We read voltage of resistors via micro-controller
and when capacitor voltage become 240, the controller stops pwm . as a result we
designed confidently boost circuit. To achieve various kicking forces, we use IGBT
G27N120BN. To drive IGBT, we use IR2106 IGBT driver. When we apply PWM
with different intervals, we create various kicking forces.

Fig. 4 Design of kicker circuit

2.5. Communication

In this year, we didn’t change anything in communication because we didn’t face any
problem with our RF modules. We use XBEE-PRO RF module and it was working
perfectly in communication area.

Fig. 5 Atmel SAM3X8E ARM Cortex-M3

3. Mechanical Design

3.1. Chassis

We are going to use new 3mm titanium for the chassis of our robots this year. Although
we are going to build our robot from titanium this year we are going to keep the same
wheel orientation and all the other dimensions of our robot regarding to last year. We
will have 45 degrees at the rear and 33 degrees at the front wheels with respect to the
horizontal axis.

3.2. Omni-Wheels

We have 15 rollers on our omni-wheels and they are 10mm in diameter. The pinion
that is connected to the motor has 20 teeth and the internal gears which are mounted
on the back side of each wheel has 72 teeth. As a result we will have 3.6:1 gear ratio
on our wheels where we will have more torque to achieve the desired acceleration.

Fig. 6 Inside view of our Omni-Wheel

3.3. Kicking Mechanisms

We can hit the ball in very large range of speeds from 0.1 m/s to 8.0 m/s. The kicking
mechanism will not kick faster than 8.0 m/s in any circumstances. As a new part to
our robots this year we implemented chip kicker to the robots. While chip kicking the
ball will not exceed 50cm height at the top point.

3.4. Dribbling Mechanism

Dribbling mechanism uses Maxon EC-16 30Watt motors. We have 1:2 gear ratio in
our dribbler to reach around 12000rpm. With a screw set up we can change the height
of the dribbling mechanism to adapt different types of carpet.

Fig 7. Kicking, Dribbling and Chip-Kicking Mechanisms

4. Software Design

4.1 Behavior Tree Based Control

Decision Making (DM) is one of basic blocks of soccer robot navigation system. DM
analyses the current state of the world model and makes decisions about new
positions of robots. In the paper behavior tree based control is proposed for decision
making. BT is goal oriented. Each tree is assigned a goal, that will be achieved. The
robot behavior is a control law that satisfies a set of constraints to achieve a particular
goal. Each behavior is defined by the set of actions. BTs perform a number of
artificial intelligence (AI) techniques such as Finite State Machines, Scheduling,
Planning, and Action Execution.

A BT enables modularity, making states nested within each other and thus forming a
tree-like structure, and restricting transitions to only these nested states. The root node
branches down to the tree until the leaf nodes are achieved. The leaf nodes are the
base actions that define the behaviors. As noted above the use of FSM for robot games
increases the number of states required to encode the behavior of the robots, along
with the number of transitions between the states. This grows the complexity of
algorithm. Behavior trees replace the growing mess of state transitions of finite state
machines (FSMs) with a more restrictive but also more structured traversal defining
approach. Because of this, BTs easily define complex states. Behavior trees are
formed by hierarchically organizing behavior sub-trees. The strength of BT comes
from the fact that it is very easy to see logic, they are fast to execute and easy to
maintain. In the paper BTs for control of soccer robots playing a football game are
designed. A BT is made up of three types of nodes, action, decorator, composite.
Composite and decorator nodes are used to control the flow within the three and
action nodes are where the code is executed, they return success or failure and their

return value is then used to decide where to navigate next in the tree. Actions are used
to change state such as calculating a new path or kicking the ball. Composite nodes
include set of nodes such as selector, sequence nodes and their parallel and random
versions.

Selector and sequence nodes are workhorse internal nodes. A sequence represents a
series of behaviors that needs to be accomplished. A sequence will try to execute all
its children from left to right. If all of its children succeed, sequence will also succeed.
If one of its children fails, sequence will stop and return failure (Fig.4.1(a)). Fig.4.1(a)
describes a hypothetical “Pass” sequence which will start executing its children from
left to right, first checking if the receiver is at the correct assist spot waiting for a pass
then make sure a pass is safe. If both these conditions are met, only then it will
execute the pass and return success up the tree.

Selector node will try to execute its first child. If its first child returns success, it will
also return success. If the child fails, it will try executing its next child until one of its
children returns success, or the node runs out of children at which point the node will
return failure. This property allows us to choose which behavior to run next. The tree
in Fig.4(b) chooses between shooting at the goal directly or executing a pass. Selector
will start executing its children from left to right beginning with “Shoot Goal”
sequence. If both “Can Shoot to goal?” and “Shoot” actions succeeds, sequence will
succeed which will cause the selector to succeed. If “Shoot Goal” sequence fails it
will keep trying to execute its children until one succeeds in which case selector will
also succeed. If all fails selector will also fail.

Fig 8. Behaviour Tree

As an example in Fig.4.2 “Pass” behavior is described. “Pass” sequence begins by
taking control of two robots using a parallel sequence which acts like a sequence but
executes its children in parallel aligns, passer and receiver for a pass, then the tree
checks if a pass is safe, if a pass can be made passer shoots the ball. Next, the
sequence waits for the ball to start moving, once that happens, we again wait for
either the ball to stop or the ball gets within a robot diameter to the receiver at which
point receiver moves and captures the ball.

Fig. 9. Pass Behavior Tree

The low level behaviors are composed to form high level behaviors. Some of the high
level behaviors include,

• Formations behavior places robots on various hard coded spots on the field.
• Offensive Game behavior focuses on scoring goals against the opponent, as

opposed to defense plays, which focus on preventing goals being scored into home
goal.

• Defensive Game concerns plays within game that focus on preventing the opponent
from scoring goals, as opposed to offense plays that focus on scoring against the
opponent

• Game Selection behavior used to select the main tactic.

Fig. 10. Defensive game behavior

5. References

1. Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac. Navigation of Mobile Robot in
Dynamic Environment. IEEE CSAE 2012 Conference, China

2. Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac, Mustafa Arici, Muhlis Bayezit.
NEUIslanders Team Description Paper 2012, Robocup SSL, MexicoCity,
Mexico

3. Rahib H. Abiyev, Senol Bektas, Nurullah Akkaya, Ersin Aytac. Behavior Tree
Based Control of Holonomic Robots. International Journal of Robotics and
Automation. WSEAS Conference 2013, Limasol, Cyprus

4. Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac. Control of Soccer Robots Using
Behaviour Trees. ASCC 2013

5. Rahib H. Abiyev, Senol Bektas, Nurullah Akkaya, Ersin Aytac. Behavior Trees
Based Decision Making for Soccer Robots. Recent Advances in Mathematical
Methods, Intelligent Systems and Materials 2013

6. Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac, Dogan Ibrahim. Behavior Tree
Based Control For Efficient Navigation Of Holonomic Robots. International
Journal of Robotics and Automation

7. Ali Erdinc Koroglu, Rahib Abiyev, Nurullah Akkaya, Ersin Aytac, Mustafa Arici,
Kamil Dimililer. NEUIslanders Team Description Paper 2013, Robocup SSL,
Eindhoven, Netherlands

8. Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac, Irfan Gunsel, Ahmet Cagman
Improved Path-Finding Algorithm for Robot Soccer. International Conference on
Control, Robotics and Informatics. Hong Kong 2014

9. Rahib Abiyev, Nurullah Akkaya, Ersin Aytac, Gorkem Say, Fatih Emrem, Mustafa
Arici. NEUIslanders Team Description Paper 2014, Robocup SSL, Joao Pessoa,
Brazil

