
MRL Extended Team Description 2015

Amin Ganjali Poudeh, Hadi Beik Mohammadi, Mohammad Sobhani, Taban
Akbarzadeh, Ali Hajighasemi, Hamed Mahmoudi, Saeid Esmaeelpourfard,

Meisam Kassaeian Naeini, and Aras Adhami-Mirhosseini

Islamic Azad University of Qazvin, Electrical Engineering and Computer Science
Department, Mechatronics Research Lab, Qazvin, Iran

a.adhami@ece.ut.ac.ir

Abstract. MRL Small Size Soccer team, with more than six years of
experience, is planning to participate in 2015 world games. In this paper,
we present an overview of MRL small size hardware and software design.
Having attained the third place in 2010, 2011 and 2013 competitions,
this year we enhanced reliability and achieved higher accuracy. Due to
enlargement of the field, we had to change some parts of software code
from low level control to high level strategies. Finally, by overcoming
electronic and mechanical structure problems, we promoted the robots
ability in performing more complicated tasks.

1 Introduction

MRL team started working on small size robots from 2008. In 2013 Robocup,
the team was qualified to be in semi-final round and achieved the third place.
In the last competition in Brazil MRL team ranked in the top 8 teams. In the
upcoming competitions, the team goals are, first: preparation for double-sized
field games and, second: having more dynamic and intelligent behavior. In 2015
competitions the main structure of the robots is the same as last year, see [1]
for details. Figure 1 shows the MRL 2015 robots.

Some requirements to reach this target are achieved by redesigning the elec-
trical and mechanical mechanisms. Moreover, simple learning and optimization
approaches are employed in the way of more dynamic play. Evaluation by soft-
ware tools, like online debugger and simulator which is detailed more in [2], made
the design procedure and verification faster.

This paper is organized as follows: First of all, the software architecture
which includes our approaches in high level strategies, defence algorithms with
details are described in section 2. The Electrical design including ARM micro
controller together with FPGA, and other accessories of robots onboard brain, is
explained in section 3. Description of new mechanical structure, which modifies
the capabilities of the robots dribbler system, is the subject of section 4.

2 Software

In this part the software main objects are presented. It is shown that how our
new modifications provide us a more intelligent and flexible game. In this year

Fig. 1. MRL robot for 2015 competitions

MRL software team has not changed the AI main structure. The game planner
as the core unit for dynamic play and strategy manager layer is not changed
structurally, but some new skills and abilities are added to the whole system. In
this section, after a brief review about the AI structure, short description of the
unchanged parts are presented and references to the previous team descriptions
are provided. Finally major changes and skills are introduced in details.

The software system consists of two modules, AI and Visualizer. The AI
module has three sub-modules being executed parallel with each other: Planner,
STP Software (see [6]) and Strategy Manager. The planner is responsible for
sending all the required information to each section. The visualizer module has
to visualize each of these sub-modules and the corresponding inputs and outputs.
The visualizer also provides an interface for online debugging of the hardware.
Considering the engine manager as an independent module, the merger and
tracker system merges the vision data and tracks the objects and estimates the
world model by Kalman Filtering of the system delay. Figure 2 displays the
relations between different parts. In this diagram, an instance of a play with its
hierarchy to manage other required modules is depicted. The system simulator
is placed between inputs and outputs and simulates the entire environment’s
behavior and features. It also gets the simulated data of SSL Vision as an input
and proceeds with the simulation.

Fig. 2. Block diagram of AI structure

Many parts of AI system are the same as before that are described in the last
years ETDPs. The following list describes these parts breifly, while the references
for details are mentioned for each part.

– Some techniques and skills like space dribble and chip dribble are introduced
in [4].

– Visualizer and online debugging system as useful tools for fast improvements
are discussed in [4] and [2].

– Game planner and some main features of it (e.g. regioning) are described in
[3].

– Role assigner as an important part of STP structure is mentioned in [2].
– Defense analyzer as an auxiliary tool to understand the defense strategy of

the opponent are introduced in [1].
– Motion planner and navigation system consists of the RRT path planner

and trajectory generation method are discussed in [2]. A heuristic method
that uses the maximum robot ability of motion on the generated path is
introduced there.

– Model predictive control for trajectory tracking is introduced in [1] for small
size robots. Details and results of the suggested methods can be found in [5].

In the following subsections we introduce improvements and modifications in
details. Note that, the arrangement of the introduced approaches is to increase
tractability.

2.1 Strategy management

Last year we introduced a new layer of MRL AI hierarchy, the Strategy Layer.
In the strategy layer, the AI system learns to select the best game strategy for
some specific time frames. Each strategy is a heuristic game playing for certain
number of attendees. “Field region”,“game status” and“minimum score to be
activated” are parameters pertaining to each strategy. For instance, Sweep and
Kick strategy with three attendees that works well in the middle of the field is
activated after score one, and requires“Indirect Free Kick” game status. If all
four parameters are satisfied, the strategy becomes “applicable” at certain time
frame. We model each strategy as a Finite State Machine (FSM). Consecutive
states of strategy FSM indicate the chain of actions required to be performed in
that strategy. The transition conditions between states reflect the prerequisite
conditions for the actions. The FSM has an initial state with which the “applica-
bility” is verified. It also has got Trap and Finish states indicating “failed” and
“successful” ending of the strategy, respectively. A dynamic score is designed
for each strategy. After completion of each strategy (either failed or successful),
the strategy score is updated. Also the strategy score will be updated based on
the result of the game analysis achieved from the game planner and opponent
defense analyzer during the game.

Strategy manager operates as the highest component of the Strategy Layer.
This component is responsible for selecting the best strategy at each time frame.
The strategy manager has three different selection policies:

1. Random Selection: The manager randomly selects one of the applicable
strategies.

2. Higher Score with a Probability of Random Selection: The manager
tends to select the strategy with the highest score as of now, trying to apply
the best strategy which has proved to have the best performance. Also,
for the sake of giving the chance to some lower scored strategies to make
progress, the manager randomly selects a strategy with probability of P .

3. Weighted Random Selection: The manager randomly selects one of the
strategies, each of which has a weight corresponding to the probability to be
selected.

The Strategy Manager selects one of the applicable strategies in one of the
three mentioned ways and the roles for performing the strategy are assigned to
the attendee robots. When the strategy traps or successfully ends, roles for the
normal play are reassigned to the robots. The strategy layer helps us to avoid
a share data or blackboard for agents. Therefore we can design a cooperative
game of agents, dynamically.

2.2 Prioritizing opponents robots

This part plays the main role in defensive tactics. It is very important to cover
opponent attack strategy with a reliable defense. In defensive tactics, due to the
robots high speed and accuracy, each mistake can lead to a goal chance for the

opponent. On the other hand,owing to the various attacking strategies used by
different teams, covering all possible game conditions needs a lot of parameters
and that raises the chance of mistakes. Collecting all these parameters and find-
ing proper relation between them is a very hard or even impossible task. We
calculate a score between 0 and 1 for each opponent robot in each frame. This
score shows opponent robots importance. This score must be very reliable in all
opponent attack conditions. In order to reduce the complexity we have divided
this operation to two parts offline sampling and online calculation.

Offline Sampling :
In this part the field is divided to 9 regions as into Figure 3. By putting the ball
in the center of each region, to increase scores reliability, a set of scores obtained
by human perception will be assigned to 24 critical points of the field. Consider

Fig. 3. The selected region for scoring

pb(i) = (xb(i), yb(i)) i = 1, .., 9 center of each region. For each of these positions
define pr(j) = (xr(j), yr(j)) j = 1, .., 24 positions for points to be scored. s(i, j)
shows the importance (score) of position j when the ball is in position i.

Online Calculations :
To compute the score for each opponent robot, there are two situations in the
game:

– An opponent robot owns the ball:

Suppose the ball owner is in position (x0, y0). For an opponent robot in
position (xs, ys) we compute the importance score as score(xs, ys). First of

all we define ϕ(i, j) and ϕt(i, j) as:

ϕ (i, j) = exp

(
− (xs − xr (i, j))

2

σ2
x

− (ys − yr (i, j))
2

σ2
y

)
(1)

where ϕ(i, j) shows how much the opponent robot belongs to the predefined
positionpr(i, j). σ2

x and σ2
y are variances of Gaussian function that are used

to adjust the validity of each point domain.

ϕt (i) = exp

(
− (x0 − xb (i))

2

σ2
xt

− (y0 − yb (i))
2

σ2
yt

)
(2)

where ϕt(i) shows how much the ball owner belongs to the predefined ball
position pb(i). σ

2
xt and σ2

yt are variances of Gaussian function that are used
to adjust the validity of each point domain.
Now, st(i) is defined as the predicted normalized score of opponent robot at
at (xs, ys) with speed of (vx, vy) if the opponent ball owner is exactly in the
predefined ball position pb(i)

st(i) = s̄(i) +

(
∂s̄(i)

∂xs
vx +

∂s̄(i)

∂ys
vy

)
∆t (3)

where s̄(i) is the normalized score of the static opponent robot if the ball
owner is exactly in the predefined ball position pb(i).

s̄(i) =

∑24
j=1 s(i, j)ϕ(i, j)∑24

j=1 ϕ(i, j)
(4)

Parameter ∆t used is as prediction horizon of scoring for a moving opponent
robot, Figure 4.Finally, the opponent score for an arbitrary position of the
ball owner is computed as:

score(xs, ys) =

∑9
i=1 st(i)ϕt(i)∑9

i=1 ϕt(i)
(5)

– No opponent ball owner exists:
In this situation depend on the ball position and velocity and opponent
robots’ positions with a heuristic function we guess the next opponent ball
owner. After selecting the future ball owner the same calculations leads to
the each robot importance score.

2.3 PassShoot strategy

Simple pass and shoot is one of the most common strategies in SSL owing to
its high execution speed. On the other hand due to the improvement of SSL
teams in marking and defense tactics, it is very hard to achieve success with

Fig. 4. Velocity of robot (ID 11) to the important region causes fast increasing of its
score.

simple pass and shoot strategy with two attended robots. The proposed pass
and shoot strategy has been implemented with three robots, a passer and two
positioners, Figure 5. Moreover, to increase the chance of success, the strategy
has been implemented in the most possible dynamic way. In this strategy one
of the positioners is selected to get the pass. The selection is made at the last
moment of the passing state of the strategy. It depends on the situations (posi-
tion, clearance and ...) of two positioners. Due to this type of selection, it is not
clear which robot kicks the ball. In order to make the strategy dynamic, we use
a synchronizer module. This module synchronizes passer with the positioners
in the way that pass point is reached by the ball and the selected positioner
simultaneously. The synchronization method considers the conflicts and obsta-
cles. This module calculates the wasted time and then makes up this time by
changing operations time-line. Thanks to the synchronizer, it is not necessary
for the shooter robot to be in the pass point from the beginning. This increases
the chance of success. The pass point is determined by the game planner module
using a grid based algorithm according to some parameters like goal view angle,
opponents density and . . . in different regions of the field. Type of pass (direct
or chip) depends on the obstacles in the way of pass point. It can be changed
until the time of kicking.

Synchronization algorithm This module is used for synchronizing between
passer and shooter robots while unexpected causes such as obstacles in the way

Fig. 5. Pass shoot strategy: (a) Initial state: positioning and pass point (aqua circle)
selection (b) Pass state, (c) Final state.

of shooter robot does not make any disturbance in the pass-shoot time-line. To
this end parameter tm is defined as the time it takes the shooter robot to reach
the pass target in an obstacle free path and tp is defined as the time it takes the
ball to reach the pass target from beginning of the pass procedure. tp and tm
are determined as below:

tm = km ·motionT ime
(
ps(0), pt

)
tp = kp ·

(
passT ime (passSpeed, pt) +motionT ime

(
pp(0), pb

))
+ two

where
two: An offset waiting time
ps(i): Shooter robot position at frame i of the procedure
pp(i): Passer robot position at frame i from the beginning of the procedure
pb: Ball first position
pt: Pass target position
km and kp: Constants
motionT ime is an experimental/heuristic function that estimates the time it
takes a robot to reach a target from an initial point.
passT ime function calculates the time it takes a passed ball to reach a target
with an initial pass speed considering both rolling and slipping parts of the ball
motion.

Considering these definitions the pseudo code of synchronization function is
as below:

isInPassState = goPass(passTarget, tw);
if isInPassState then

counter + +;
if tp > tm then

if counter ≥ tp − tm then
goToPoint(shooterRoboto, passTarget);
determineWaitingT ime = true;

else
determineWaitingT ime = false;
stop(shooterRobot);

end

else
gotoPoint(shooterRobot, passTarget);
determineWaitingT ime = true;
if counter < tm − tp then

two + +;
end

end

else
counter = 0;
stop(shooterRobot);

end
tw = two;
if determineWaitingT ime then

twe = calculateExtendedWaitingT ime();
tw = tw + twe;

end

goPass function generates proper commands for robot to go behind the ball
and throw a pass to an specific passTarget after waiting for tw frames. It returns
a Boolean flag which indicates if there is any obstacle between passer robot and
the ball.

calculateExtendedWaitingT ime function determines extended waiting time
depends on the deviation of the shooter robot from the straight (obstacle free)
path. For this purpose vr is defined as the reference coordinate as below:

vr = pt − ps (0)

We use a near-time optimal trajectory planner implemented as the function of
〈V ∗

ideal, X
∗〉 = motion1DinRefrence

(
Ps(0), pt, r

)
to compute the sequence of

velocity commands V ∗
ideal and the position X∗ required to navigate from initial

location ps(0) to pt along vr with final velocity of zero, see Figure 6. To compare
the motion of the shooter robot with an ideal motion along vr, dx and dr are

Fig. 6. Pass-shoot synchronization

determined as below:
d = Ps(n)− ps(n− 1)
R = Ps (n)− ps (0)

dr = |R| · Cos
(
R̂,vr

)
dx = |d| · Cos

(
d̂,vr

)
where
d: Displacement vector of shooter robot in the last frame
R: Displacement vector of shooter robot from the initial point
dx: Projection of d on vr

dr: Projection of R on vr

Finally, the extended waiting time twe is calculated from the following equa-
tions.

vd = V ∗
ideal (dr)

twe =
∫ t0
tn

1− dx

vd

where:
vd: Desired velocity at distance of dr from ps(0) along vr

twe: Extended waiting time of the passer

2.4 Defenders positioning algorithm

In Small Size League matches (like real soccer games) attacking strategies are
very flexible and dynamic. This feature, implies that the defense strategies should
be dynamic too. In fact, there are lots of unforeseen states that can not be
considered in advanced. Thus, defenders can not classify all of them to have
suitable react. Between the defense skills, positioning is the most important
one. Positioning is the sequence of finding the target(s), selecting the blocking
strategy and In the last years, we used a fixed form of defense (i.e. two
defenders with goal-keeper between them). This year we are going to test the
new positioning strategy. This strategy is based on an optimization. We prefer

to perform it online. Defining a good set of cost function and constraints is the
first step in optimization. The cost function, calculate the cost of each react of
our defenders. we consider that our problem could solve better in multi-objective
optimization so we implemented two different main cost functions.

Using meta-heuristic and gradient-base optimization algorithms helped us to
solve these problems.

First Cost Function has focus on maximum coverage of the goal line. Follow-
ings, we calculate empty points of the goal based on the Figure 7.

xleft = p tan
(
Θ − sin−1

(
R
D

))
xright = p tan

(
Θ + sin−1

(
R
D

)) (6)

After calculation of all 6 Points on the goal Line, we exclude the overlaps. So we
have strict value of goal coverage.

GoalCoverage = (X1Right −X1left) + (X2Right −X2left)
+(X3Right −X3left)−OverlapV alue

(7)

Finally optimization algorithm tries to find minimum of GoalEmptyV alue =
1−GoalCoverage. Other objective functions that are considered with theGoalEmptyV alue
are defenders’ distance from the qoal line and from the their last positions.This
set of objective functions, results in th maximum coverage of goal with possible
minimum displacement and minimum distance to goal center. This optimiza-
tion has some constraints according to the rules of SSL 2015. Defenders cannot
go to the penalty area, goal keeper should stay in the penalty area and . . . are
the most important constraints that are considered in the optimization. To find
the best positions of the defenders and goal keeper, the constraint nonlinear
non-convex multi-objective optimization problem is solved by Particle Swarm
Optimization (PSO) method. PSO has been chosen because it is faster than
other meta-heuristic methods. Gradient based optimization techniques are usu-
ally failed because of the local minimum problem.

2.5 Penalty Goal Keeper

In small size league, penalties are converted to goals more often than not. Missed
penalty kicks are often caused by the kicker robot not the reaction of the keeper.
This is mainly because of the command delay, ball speed after the kick and short
distance of the penalty point to the goal line. This means that if the keeper waits
for the kick to find the diving direction, it usually does not reach the ball. The
only possible way, is to start the motion several frames before the kick time or
force the kicker robot to select the direction that is suitable for keeper. This
year we introduce a learning algorithm that tries to guess the penalty shooter’s
behavior. The method especially focuses on the penalty shootout to determine
which team is victorious after a drawn match. In this case, each team at least
kicks 5 penalties. The learning algorithm for the goal keeper is a combination
of classification and pattern recognition methods. Based on the prior penalty

Fig. 7. Goal Overlay

kicks by different teams, we extract and classify different types of penalty kick-
ers’ behavior. In particular, 18 main patterns are generated by the main state
machine, Figure 8 . Some of these patterns describe a simple strategy for kicking
a penalty, some others show more complicated behavior that are a combination
of simple ones. Each pattern may contains some parameters that tunes the be-
havior. For each pattern, we find the best reaction of the goal keeper like diving
and special movements.

After defining the patterns, we try to find the best pattern that fits the
particular penalty kicker. This classification procedure starts by the first penalty
kick at each game and resets at the end of the game. Many data are extracted
from each penalty kick and converted to knowledge about the kicking pattern.
This knowledge, for instance initial angle of kicker robot , last angle of kicker
robot and distance to ball before kick, help us to classify the penalty kicks
correctly. At each penalty kick, goal keeper has two kind of behavior: saving or
exciting. Saving is the reaction that aim to catch the ball, while exciting is the
action (or reaction) that tries to reveal an important specification of the kicker
behavior. Simple analysis shows that if the kicker robot acts similar to one the
patterns and does not change its behavior, after the third goal keeper will do
saving reaction with increasing chance of success.

Fig. 8. Penalty pattern generating state machine

3 Electronics

MRL robot electronic consists of an Altera Cyclone FPGA linked to an ARM
core the same as previous years. Changes during last year in this section is im-
plementation of parallel motor controllers in FPGA, since calculation of PID
controllers in software requires a lot of CPU time. Moreover, moving controllers
to FPGA, the ARM processor can be dedicated to other tasks with less inter-
rupts. The other changes are using frequency IR sensor for ball detection and
some modifications on the wireless board. For unchanged parts of the electronics
see [2] and [1].

3.1 Main Board

Main board of the robot, which mainly drives wheels and dribbler motors, is
illustrated in Figure 9. The board is the same as MRL 2013, [2].

Fig. 9. MRL mainboard

Principle of bootstrap gate driver Signals created from FPGA should turn
on the power MOSFETs, but the voltage level of the FPGA pins is not adequate.
As a result, MOSFET driver should be used to amplify these signals.

The previous MOSFET driver has voltage supply limitations. Also these
drivers can be implemented in the case that the maximum input voltage level
is less than the gate-to-source breakdown voltage. While the input voltage level
prohibits the use of these drivers, principle of bootstrap gate driver can be taken
into consideration. Also previous signals were divided into two parts, logic and
power. To transfer the signals between these parts, optocouplers are used. Due to
photo-transistor structure of this device,the temperature which rises up in other
parts, affects the output voltage level of this device. On the other hand the total
delay between transitions is high. Therefore it is essential to replace this part
of circuit. Direct driver with ground considering, improves the reliability and
increases the switching frequency. For more details see [1].

MOSFET selection Considering the fact that the most of the power loss is
related to theRDSon,to reduce power loss we should first choose a RDSon but as
a result Qg of the MOSFET is increased. Qg factor defines the time transition in
switching and reduces the losses in the gate drive circuit owing to the fact that
less energy is required to turn on or off. In optimal design the trade-off between

these two factors is important. Since the motor driver frequency is low, RDSon is
more important than Qgin in our design. According to the following table which
is owned by NXPTM cooperation the PSMN0R9 high performance N-channel
MOSFET is selected. Figure 10 lists different MOSFET specifications.

Fig. 10. List of MOSFET specifications.

3.2 Low level Controller

The electronic part consists of FPGA and ARM7 microcontroller. signal process-
ing is managed in FPGA and other tasks like wireless communication, algebraic
operation and control task are done in ARM7 core. Among these tasks, the
control loop is the most important one.

This architecture faces some problems as:

– Time limitation in perform of control loop due to the high computational
cost.

– Suppressing the control loop interrupts by some interrupt event with higher
priority.

According to the drawbacks mentioned above, redesigning this structure seems
essential. Implementation of PID control loop in FPGA, eliminates these con-
straints with lowest software and hardware cost. There are two ways to solve the
problems:

– Utilizing a soft core like Nios embedded-processor for Altera FPGA.

– Self design architecture and implementation for PID in FPGA.

The first way causes over hardware designing. It is not an optimal way, since the
ARM architecture is more powerful than other soft cores. Thus, to design and
implement PID control loop in FPGA, we select the second way based on [7].

3.3 Ball detector

To recognize the ball position in dribbler we used and inferred sender and trans-
mitter and reading them with ADC unit in ARM. As it is mentioned in the last
year ETDP, we use IR sender sensors currently with specific frequency which is
sync with two special frequencies with different measurements [9].

– Transmitter
– Receiver

In first part we make two square pulses with function generator in 2 kHz and
38 kHz which is match to the receiver sensor and sync them in logic gate also
generate with 555 timer IC [8]. Figure 11 and Figure 12.

F = 1.4/((R1 + 2R2) ∗ C1)
T = 0.69 ∗ (R1 + 2R2) ∗ C1

DutyCycle = R2/(R1 + 2R2)
f = 1.4/((6.8k + 2(69kΩ) ∗ 0.01uF = 966Hz
f = 1.4/((120 + 2(3.566kΩ) ∗ 0.01uF) = 37982Hz

(8)

In the receiver part, at first we design a discrete band-pass filter and test it

Fig. 11. data syncing with and gate

in laboratory. The ambient noise with any intensity makes an offset in receiver
sensor output. So we makes an AGC [10], then the project stopped because of
ignoring lots of important parameters in designing. As a result we decide to use
infrared remote-control receiver modules instead of these discrete boards. These
sensors square output will be 50% duty cycle by receive active infrared and 100%
with infrared line, Figure 13. The resulting square digital output of sensor is
sent to a RC low pass filter. The circuit is simulated in Altium designer software
to calculate and choose the optimum values for capacitor and resistors of the
filter. The output of this digital to analog converter is compared with a special

Fig. 12. Transmitter input pulse

DC voltage that show us ball position as a flag, Figure 13 and Figure 14. The
time constant of the RC filter is calculated as:

T = RC ⇒ 1.034ms = 4.7k × 220nF (9)

To protect sensors and have better ball positioning, the location and structure
of sensors is changed. As the result, we have a special line sensors that provides
the same ball position in every environmental conditions. This architecture faces
some problems as:

– Time limitation in sensing causes delay in ball detection.
– Grand voltage noise, that is generated in starting current of motors, causes

some errors in the receiver circuit.
– Different voltage level compare to ARM causes some difficulties in design.

According to the drawbacks mentioned above, redesigning of this structure seems
essential. Implementation of IR sensing in FPGA, eliminates these constraints
with lowest software and hardware cost. Now, we are going to generate and sync
transmitters pulse in FPGA and count receiver pulse in a predefined period of
time.

3.4 Wireless board

According to the new small size league rules in enlargement of the field and the
data packet lost problem, we decide to improve our wireless communication yield
with a high efficiency wireless LAN PA, pursuant to our wireless communication
module (nrf24101+), increase our signal power from 1dBm to 28dBm and change
antenna from 7dBi to 11dBi.

4 Mechanical Design and construction

Typically, the main portions of mechanical structure of a small size robot, include
4 wheels, two kickers, a dribbler and the motion transformer system, Figure 15.

Fig. 13. Blue-Rc input, Green-Rc output (in connect and disconnect situations)

Fig. 14. Sensor Output diagram

Regarding the league rules, diameter of the robot is 179mm and the height is
140mm. The spin back system conceals 20% of the ball diameter in the maximum
situation.

Due to some drawbacks in the previous proposed design, we have decided
to improve both the mechanical design and the construction materials. Main
changes in the mechanical structure of the robot are described in the following
paragraphs. The other parts are the same as 2014 robot described in [1].

4.1 Calculation of maximum ball-in-hand side acceleration

When we want to carry the ball with robot while moving to the sides, we need
to know what is the maximum allowable acceleration of the robot. For this

Fig. 15. Robot 2015 mechanical structure

calculation we assume that the ball is in robot by 20% of its diameter, see
Figure 16.

When the robot moves to the sides (left or right) a side force is acting to the
ball. The direction of the force is shown in Figure 17. As mentioned, assuming
that the ball is in the robot by 20% of its diameter, we have

Fy =
12.9

21.5
F (10)

where
Fy: Vertical section of the force F that acting to the ball.
F : The force that acting to the ball.

To analyze the force, realize that when the vertical section is grater than the
force of the dribbler spin, the ball runs out of the robot. In other side, this force
is calculating with the equation below:

F = ma (11)

where:
m:Mass of the ball
a:Acceleration of the robot and ball to the sides

when the robot is spinning and carrying the ball, the force to the ball is equal
to the friction force between the ball and the field. So we have the following
calculations:

Fy = Fk ⇒ 12.9
21.5ma = Fk

m = 0.046kg ⇒ 12.9
21.50.046a = Fk

⇒ amax = Fk
21.5
12.90.046

(12)

Fig. 16.

where:
Fk: Motion friction force

Therefore by estimating the parameter Fk and putting it into the equation,
we can calculate the maximum acceleration of the robot when moving to the
sides while carrying the ball. Note that we do not calculate the vertical force in
our current calculations and postpone it to the future.

4.2 Kicking systems

We use two kinds of kicking systems, direct kick and chip kick. Each kick system
consist two parts, solenoid and plunger. The custom made cylindrical solenoid

Fig. 17.

is used for direct kick similar to last year which has ability to kick the ball up
to 9ms. This year as a chip kicking system, because of performance problem we
decided to reshape the solenoid from rectangular to cylindrical. Because of the
electromagnetic effect in the cylindrical plunger two separate parts are used, one
part is made from pure iron (ST37) and another one is made from Aluminum
Alloy (7075). The chip kick has a 45 degree hinged wedge front of the robot
which is capable of kicking the ball up to 6m before it hits the ground.

4.3 Dribbling System

Dribbling system is a mechanism to improve the capability of ball handling.
As it is shown in Figure 19, dribbler is a steel shaft covered with a rubber
and connected to high speed brushless motor shaft, Maxon EC16 Brushless. We
examined several materials for dribbler bar, such as polyurethane, Silicon and
carbon silicon tube. Carbon Silicon is selected due to its higher capability in ball
handling. Since the spin back motor is in the front side of the robot, it is exposed
to the strikes caused by the collision with the ball or other robots. To solve this
problem, we took the spin back motors position a little back and designed a
shield for it. To improve the capability of spin back to control the ball, we made
a construction in which the amount damping is controlled.

Due to placing sensors transmitter in kicker system and large visibility range
of the receiver which is not good for ball detecting, We decide to decrease the
visibility range of the receiver sensor by creating a small 1mm diameter hole on
the arm of the spin back, see Figure 18. Placing a cover on the sensors connections
we save them from any unwanted damage.

Fig. 18. Hole of sensors

To improve the capability of spin back for ball control we made a construc-
tion in which the amount damping is controlled by two adjustment screws for
proper angle and position of the spin back. The construction consists of a height
adjustment screw which tunes the height of spin back structure for different
carpets.

Fig. 19. New dribbling system of the MRL robot

This year, we decide to replace the spin back gear box with the time belt.
This leads to a better efficiency and reduces the noise of gear box. In addition,
time belts are easier for installation. The best available time belt for the current
structure is T2/90 because of its rate, length and pitch. The time belt properties
are listed in table 1.

Table 1. T2/90 time belt properties

Type width length pitch

T2/90 4mm 90mm 2mm

References

1. Ganjali Poudeh, A., Beik Mohammadi, H., Hosseinikia, A., Esmaeelpourfard, S.,
Adhami-Mirhossein, A.: MRL Extended Team Description 2014. Proceedings of the
17th International RoboCup Symposium, Jao Pesoa, Brazil, (2014).

2. Ganjali Poudeh, A., Asadi Dastjerdi, S., Esmaeelpourfard, S., Beik Mohammadi,
H., Adhami-Mirhossein, A.: MRL Extended Team Description 2013. Proceedings of
the 16th International RoboCup Symposium, Eindhoven, Netherlands, (2013).

3. Adhami-Mirhosseini, A., Bakhshande Babersad, O., Jamaati, H., Asadi, S., Ganjali,
A.: MRL Extended Team Description 2012. Proceedings of the 15th International
RoboCup Symposium, Mexico city, Mexico, (2012).

4. Ahmad Sharbafi, M., Azidehak, A., Hoshyari, M., Bakhshande Babersad, O., Es-
maeely, D., Adhami-Mirhosseini, A., Zareian, A., Jamaati, H., Esmaeelpourfard,
S.,: MRL Extended Team Description 2011. Proceedings of the 14th International
RoboCup Symposium, Istanbul, Turkey, (2011).

5. Zarghami, M., Fakharian, A., Ganjali-Poudeh, A., Adhami-Mirhosseini, A.,: Fast
and Precise Positioning of Wheeled Omni-directional Robot With Input Delay Us-
ing Model-based Predictive Control. Proceedings of the 33th Chinese Control Con-
ference (CCC), pp. 7800–7804, Nanjing, china, (2014).

6. Browning, B., Bruce, J.; Bowling, M., Veloso, M.M.: STP: Skills, Tactics and Plays
for Multi-Robot Control in Adversarial Environments. Robotics Institute, (2004).

7. Wei, Z., Kim, B.H., Larson, A.C., Voyles, R.A.: FPGA implementation of closed-
loop control system for small-scale robot. Proceedings 12th International Conference
on Advanced Robotics, pp. 70–77. IEEE Press, (2005).

8. Texas instruments: LM555 Timer (Rev. D) data sheet. Texas Instruments Incorpo-
rated, (2015).

9. Utilizing a Vishay IrDA Transceiver for Remote Control. Application Note by
Vishay Semiconductors, Doc. No. 82606, (2014).

10. Anbang Liu, Jianping An, Aihua Wang: Design of a Digital Automatic Gain Con-
trol with Backward Difference Transformation. 6th International Conference Wire-
less Communications Networking and Mobile Computing (WiCOM), (2010) .

