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Abstract. The 3rd generation of the STOx’s team was designed and
built in 2014 and tested in competition in the RoboCup world cham-
pionship in Joao Pessoa, Brasil. After a thorough evaluation, we have
performed important changes in its initial design in order to improve the
team’s general behavior. In this paper we describe the most significant
changes made to the platforms as result of the experience in RoboCup.
Also, we have created a framework that increases the robustness of the
system’s perception to the vanishing of the objects within the field. We
present experiments where we vary the level of vanishing and evaluate the
average system’s performance. These tests show improved performance
of the framework, even in presence of high levels of noise and vanishing.

1 Introduction

The STOx’s team has been participating in the RoboCup world initiative since
2011 (Istambul, Turkey), for 4 years in a row achieving the world’s top 8 teams
for the last two years (2013, 2014) for our participation in Eindhoven and Joao
Pessoa respectively. The experiences gained during those years in the competi-
tions, the interaction with other team members, the competitive environment
in the games and the information found in the team description papers have
produced a variety of changes and improvements in the robots and the team.

In 2014, a new set of robots, the 3rd generation of the STOx’s team was
assembled from scratch by taking all the gained experiences during the last
four years and changing certain design parameters that aimed at improving the
accuracy, reliability and robustness of each robot and that of the whole team.
The most significant changes included in the 3rd generation of the STOx’s team
were related to the robot mechanics and electronic design parameters and strive
to obtain robots that behave as close to the simulation performance as possible.

In the following section we briefly mention some of the most basic features
of the new STOx’s 3rd generation of robots, next we describe minor changes
performed on the 3rd generation design after the 2014 RoboCup competition in
Joao Pessoa. Then, we show the process chain followed by the data after it is
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acquired by the vision system. Finally, we show a framework developed by us
that dramatically reduces the problems caused by noise in the vision system and
show its performance in the ball tracking procedure when exposed to different
values of noise.

2 STOx’s 3rd Generation

The 3rd generation of the STOx’s team was designed, assembled and tested in
competition in 2014 for the RoboCup world championship in Joao Pessoa, Brasil.
Its main features included updates in the design of wheels, dribbler system, kick-
ers, motors and main board, among others. The target in mind when designing
and building the 3rd generation was to ended up with robots that behave as close
as possible to those in simulation, specifically, in terms of accuracy, reliability
and robustness. For this reason, the most significant changes were focused on
mechanics and electronics and few changes in the Artificial Vision system and
the software controller.

A thorough evaluation of the platform’s performance after the competition
in 2014 was performed in order to tune certain design parameters and also for
improving the robot’s kinematics, aiming for smoother movements and more
accurate control. These changes are shown in detail in Section 3 and strive
for improve the general robot’s behavior for the RoboCup in 2015. Detailed
description of the STOx’s 3rd generation design can be found in the STOx’s
TDP [9] and ETDP [10] of 2014.

Fig. 1 shows a picture of one robot of the 3rd generation of the STOx’s team
with the new modifications made after the RoboCup competition in 2014. In
Table 1 we show the main characteristics of the STOx’s 3rd generation team.

Table 1. Main features of the 3rd generation of the STOx’s team

Diameter 178mm
Height 125mm
Weight (Approx) 1.5Kg
Nrollers 20
Wheel diameter 55mm
Calculated Max Speed 4m/s
Calculated Kick Speed 10m/s
Max chip distance 5m
Chassis Aluminium 7075
Wheel Motors EC45 Flat 50W
Dribbler Motor EC16 Maxon

The following section illustrates the upgrade made to this new generation
after the RoboCup world competition, specifically in the electronic design.
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Fig. 1. Picture of one robot of the STOx’s 3rd generation with the modifications after
RoboCup 2014

3 Electronics upgrade

The main changes in the robot’s electronics are related to the control of the 50W
motors. In order to improve the commutation we decided to change the channel
P MOSFETs for channel N MOSFETs, to guarantee near identical switching
time (time between ON OFF and vice versa almost equal to 60ns). Also we
have changed the drivers by ones with floating channel design for bootstrap
operation (IRS2011). These new considerations implied significant changes in
the mainboard that required the design and construction of a new mainboard,
as shown in Fig. 2.

The major benefit of the new electronics is that it allows an increase in the
motors speed, that is reflected in an increase in the robot speed. However, the
price includes a decrease of the robots autonomy due to the increase of consumed
energy (about 10%).

4 Preprocessing

In this section we present a framework developed by us and used in the SSL
STOx’s team in order to acquire the information captured by the vision system,
pre-process such data, perform especial tracking algorithms and finally create
one unique virtual representation of the physic world. This virtual world shall
then feed the artificial intelligence module that is finally the responsible for
making all the decisions in the game.
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(a) (b)

Fig. 2. (a) New mainboard’s top view. (b)New mainboard’s bottom view

Fig. 3 shows a block diagram of the processing chain followed by the data
acquired through the cameras and delivered by the SSL vision system. It de-
scribes the processes implemented in the STOx’s software in order to create one
coherent virtual world as a faithful representation of what is happening in the
game field. Specifically, such virtual world is composed of a set of features that
contain certain physical values and measurements of the elements and actions
within the field, i.e., the robots and the ball.

Fig. 3. Block diagram of the processing chain followed from the SSL vision data ac-
quisition until the Virtual World is finally created

The processing chain contains a set of modules, each with a specific purpose in
the path that transforms raw data taken and identified by the SSL vision system
into a suited virtual world that could be used by the AI module in order to decide
which actions to follow next based on the current and past circumstances within
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the field. In the following sections we describe a high level functionality of each
module.

4.1 Joiner

The first step within the processing chain consists of receiving the data that come
from the SSL vision system and transform them accordingly. These data consist
of a set of recognized items within the field with its corresponding position at a
rate of 60 fps (i.e., approx each 16ms) for each one of the 4 cameras. The first
module named Joiner is the one in charge of transforming the data coming from
the set of cameras that provide global vision into one single set of observations
within the field. In our framework, any object in quadrant i of the field should
be detected by camera i (for i = 1, 2, 3, 4). However, in practice, each camera
covers a wider area within the field than just the one corresponding to quadrant
i. In our algorithm we define two vision zones for each camera as shown in Fig.
4.

Fig. 4. Definition of Duty Zone and Extra Zone for one camera

On one hand, the Duty Zone i as shown in the figure corresponds to the area
where we expect camera i to detect items (i.e., quadrant i). On the other hand,
there is an additional zone called Extra Zone i that corresponds to the part of
the vision zone captured by camera i where we do not expect it to detect any
object. The real situation is that all cameras have an Extra Zone, and hence
are capable of detecting objects outside their Duty Zone. Due to the physical
location of the cameras, the Extra Zone of one camera will overlap at least with
the Duty Zone of one or more of the remaining cameras, creating Shared Zones
as shown in Fig. 5. Notice that such overlapping surface became larger after the
modification of the global vision system from 2 cameras to 4 since 2014 and
hence increased the number of shared boundaries among cameras.
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Fig. 5. Shared Vision Zones between the 4 cameras

The rationale behind the Joiner algorithm consists on giving a greater degree
of credibility, with respect to the position of an object within the field, to the
objects detected inside each cam’s Duty Zone and less to the objects inside
the Extra Zone. By evaluating the credibility of an object that is detected by
more than one camera we are capable of unifying the information into one single
object, as desired.

Our algorithm assigns a maximum value of confidence MC to an object as
long as such object is within the Duty Zone i perceived by camera i. If such object
is also perceived by another camera (say camera j), then the value of confidence
assigned to such observation will be some value less than MC. Notice that it is
also possible that one object that is inside Duty Zone i may not be detected by
camera i, but by other cameras. In such cases the values of confidence assigned
to the object seen by the cameras will all be less than MC.

The value of confidence Cik given to an object k that is detected by camera
i is performed using Eq. (1):

Cik =

{
MC if the item k is in the duty zone i
exp−α‖d‖ else

(1)

where d is the minimum distance from object k to the Duty Zone i.

This assignment will ended in each camera assigning a confidence value to
each detected object. The final step consists on joining objects coming from
different cameras that appear to be the same object by measuring the distance
between them. The object detected by one camera is the same object detected by
any other camera if the distance between those objects is smaller than a certain
threshold value. The position of the joined object will be the one with higher
confidence value.
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This procedure is performed for both, balls and robots detected inside the
field. The output consists of a list of objects with a unique representation inside
the field, rather than with one representation per camera. However, notice that
it is possible at this point, that we end up with several representations of the
ball (due to possible noise in the vision system), but only one representation of
each robot for each team in the field.

4.2 Ball Tracking

The Ball Tracking module shown in Fig. 3 takes as input the data output by
the Joiner module which consists on one single representation of each object
detected by the SSL vision system, instead of one representation per camera.
Under this scenario, it is common to find that the vision system detects several
false balls inside the field during short sets of frames in a random fashion. The
objective of this module is to keep a close tracking of the real ball to ensure that
the artificial balls created by noise in the vision system do not jeopardize the
team’s behavior by assigning the location of the ball in any of these false ball
locations.

Our algorithm maintains a finite set of slots used to store the information of
each detected ball inside the field. Each ball slot contains at least the coordinates
inside the field that correspond to the detected ball as well as a score. The score
of a ball slot is a normalized measure of the number of frames that the vision
system has detected such ball: the greater the score of a ball slot, the larger the
chance that such ball corresponds to a real ball.

In steady state, the algorithm maintains a pointer to the slot that corresponds
to the real ball inside the field, with its respective coordinates and score. All other
slots are assumed to be false balls in the field. From time frame t − 1 to time
frame t, several situations may occur as follows:

– One or more new balls are detected in frame t: In this case, if there
are empty slots, new slots should be occupied by the new balls.

– One or more of the balls detected correspond to an existing slot:
In this case, the score of those slots shall be incremented.

– One or more of the ball slots are not detected in time frame t: In
this scenario, the score of a ball that has been detected before but not in the
current frame is reduced. If the score of a ball reaches zero, such ball slot is
eliminated from the set.

The last situation contains a special consideration: if the ball that is currently
considered to be the real ball is not detected in the current frame, then, its score
is reduced and its coordinates features are predicted using the information of
previous frames through the Predictor module (described later in Section 5).
This means that if the ball that is considered to be real is not seen in the
current frame, we use as coordinates the values provided by the predictor only
if the real ball pointer still pointing at such ball slot (i.e., if after the reduction
in score, such ball remains the real ball). Under this scenario, the system is
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resilient against possible noise in the data acquire through the SSL vision for
the detection of the real ball. If the real ball is missing during a short set of time
frames, the system will decrease its score and predict its coordinates based on
the information available in previous frames until other ball slot obtains higher
score. In the latter situation, the real ball pointer will point to the new slot, and
hence the real ball will be considered to be that.

Fig. 6 shows the situation of 5 ball slots in time frame t− 1 and time frame
t.

Fig. 6. One step of the ball tracking algorithm and the respective update in each ball
slot.

In the figure, the first slot ball is considered to be the real ball. However,
in time frame t, the ball corresponding to such slot was not detected, but only
the balls of slots 2, 3 and 4. After updating the scores of all balls, the real ball
pointer now points to slot ball 3.

5 Virtual World reconstruction

The output of the preprocessing module is a list of objects inside the game
field detected by the vision system, each with a unique joined representation
(i.e., a single ball and one representation for each robot) expressed as a set
of features composed mainly by spatial coordinates. At this point, the entire
processing chain becomes highly dependent of the quality in the vision system.
The preprocessing modules can not do better than what is provided by the
SSL vision module. For this reason, the final step of our framework strives for
reducing this dependency in such a way that the representation of the virtual
world is not jeopardized when certain levels of noise appear in the vision system.
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In order to achieve such target, we have included three additional modules
in the processing chain, namely the State Observer, the Predictor and the
Selector as shown in Fig. 3. The functionality of such modules is described
next:

– State Observer: The State Observer is a module that is in charge of moni-
toring the data coming from the vision system after it has been preprocessed
by the Joiner and the Ball Tracking module. Also, this module computes ad-
ditional features based on the vision’s system observations. Specifically, this
module computes the velocities of the objects within the field based on each
object’s position among the time frames.

– Predictor: This module receives the values observed by the State Observer
in each frame and use it to feed a computational model of the physical
world. The model consists of a mathematical library capable of simulating
the system’s next state by using the information from previous time frames
(past and current states). We have used the Open Dynamics Engine (ODE)
library through its C/C++ API [11] in order to simulate the movement of
the robots and that of the ball in the field. This simulation is based on
a computational model of the robots, the ball and their interaction with
the carpet, requiring the tuning and assignment of certain parameters that
define these objects. A special consideration is posed in the parameter that
models the friction between the robot wheels and the carpet, since it may
significantly vary for different fields. We have performed an experiment that
allows us to estimate the friction coefficient between the robot wheels and
our lab’s carpet, as follows:
We recorded the trajectory of one ball that started with maximum speed and
measure the speed at each frame and the time until the ball finally comes to
a stop. The Eq. 2 relates the Friction with the velocity of the ball during its
trajectory:

Friction = βVin exp

(
−5

τ
t

)
(2)

where β is the coefficient friction and Vi is the initial velocity of the ball.
Fig. 2 shows the experimental values of the trajectory.
We have linearized the observations around an operation point using a first-
order Taylor series. This approximation provided us with an approximated
value of the friction coefficient.

– Selector: The Selector is managed by the State Observer and is the one in
charge of deciding which information will be used to ultimately create the
Virtual World: the data coming from the Vision System or the data output
by the Predictor. The thumb rule is that the data coming from the Vision
System will always have higher priority and will be the one that should
be used to create the Virtual World. However, when the State Observer
identifies an object (ball or robot) in the field that the vision system is not
detecting in the current frame, but that it was correctly detected in previous
frames, then, the position, velocities and other physical attributes related to
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Fig. 7. Relationship between velocity and time of the ball trajectory in the experiment

such object will be taken from the Predictor and will be used to create the
Virtual World.
We have created a set of experiments to characterize the performance of
our framework in presence of different percentage of lost frames. For this,
we have recorded a trajectory of the ball inside the game field, making sure
that no frames are lost during the process. Then, we have randomly chosen
a percentage of the total recorded frames and deleted such data to simulate
frame lost. We have used these new masked data with our framework and
evaluated the error produced when one frame is missing and our framework
predicts the position and velocity of the ball in such frame. The error of the
total trajectory is the sum of the Euclidean distance between the predicted
position and the real position. We have ran this experiment 100 times for
each percentage of lost frames and calculated the average error for values of
percentage between 0% and 95%. These results are shown in Fig. 8.
It is noteworthy that the average error increases as the percentage of lost
frames also increase. This is a expected result since the more lost frames,
the less accuracy should be expected from the Predictor Module. Notice,
however, that using our framework, it seems feasible to obtain a fair virtual
world representation even in the presence of roughly 70% of lost frames.

6 Conclusions and results

Our 3rd generation of robots has gone through a variety of changes after our
participation in RoboCup 2014, especially in the electronic design. We have
also proposed the implementation of a new framework that strives to reduce
the risk of jeopardizing the virtual world representation acquired by the SSL
vision system that is based on a mathematical model of the field and the robots.
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Fig. 8. Average error of the ball positions when comparing the output given by the Pre-
dictor module to the real value measured by the Vision System for different percentage
of lost frames.

Experiments on real recorded data has shown that such framework makes the
system behavior more robust to noise in the vision system.
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Fig. 9. Picture of the robotic members of the STOx’s team in RoboCup 2014

Fig. 10. Picture of all members of the STOx’s team in RoboCup 2014


