ZJUNlIlict
Extended TDP for RoboCup 2015

Chuan Li, Wenjian Tang, Lisen Jin
Yangsheng Ye, Xiaoxing chen, Lingyun chen and Rong Xiong

National Laboratory of Industrial Control Technology
Zhejiang University
Zheda Road No.38,Hangzhou
Zhejiang Province,P.R.China
rxiong@iipc.zju.edu.cn
http://www.nlict.zju.edu.cn/ssl/WelcomePage.html

Abstract. ZJUNlict have participated in Robocup for about ten years
since 2004. In this paper, we summarizes the details of ZJUNlict robot
soccer system we have made in recent years. we will emphasize the main
ideas of designing in the robots’ hardware and our software systems. Also
we will share our tips on some special problems.

1 Introduction

Our team is an open project supported by the National Lab. of Industrial
Control Technology in Zhejiang University, China. We have started since 2003
and participated in RoboCup 2004-2014. The competition and communication
in RoboCup games benefit us a lot. In 2007-2008 RoboCup, we were one of the
top four teams in the league. We also won the first place in Robocup China
Open in 2006-2008 and 2011. We won the first price in 2013 and 2014, which is
a great excitation to us. And we incorporate what we have done in recent years
to this paper.

Our Team members come from several different colleges, so each member can
contribute more to our project and do more efficient job.

2 Hardware

2.1 Mechanical Improvement

According to last years fabrication and assembly process, we slightly modify
some components to reduce the interference, such as the lower plate and dribbling
structure frame. In the past years, linear open-loop motion in y axis direction
wasnt accurate. After mass distribution analysis, we decide to add clump weight
in front of the robot. So we can balance the mass distribution specifically on every
robot to improve robots kinematic accuracy. In the meantime, we can change
the mass damper to test the ball handling stability. It is shown in Figure.1.

Fig. 1. The clump weight of the robot

2.2 Independent Brushless Motor Drive Circuit

The drive circuits of 5 brushless motors in old edition were placed in a com-
mon layer of PCB. But it took us lots of time to detect the error or to find the
damaged component when the whole module didnt work. Thus, firstly we sepa-
rate each three-phase full-bridge drive circuit and place them on a tiny piece of
PCB with an interface. That makes the board easily to be pulled out from the
base board and changed. Secondly we add an LED to each board so that once
the fuse on the board burned, we can notice directly. Thirdly is the phase cur-
rent detecting function. We replaced every 2-channel voltage comparator with a
4-channel voltage comparator to reduce the quantity of components.

2.3 Frequency Test and Labview Tools Improvement

In order to inspect the communication capabilities of robot more precisely
and conveniently, we improved the Labview tool and the five communication
check modes, which are listed below.

I. Robot Receive Mode

IT. Robot Send Mode

ITI. Robot Receive and Send Mode

IV. Transmitter Receive Mode

V. Action Mode

Considering that actions of robot may exercise an influence over the commu-
nication of robot, we add action model specially. In Action Mode, robot are asked
to do several action and we test its communication simultaneously, so we can
acquire its real package lose rate in the contest. With the help of the improved
communication-test software, we could test every parts of the communication
system and acquire more precise package lose rate.

Besides, we add the frequency test function into Labview to simplify the
operation. Thus, we can easily press a button to replace the complex operation
of serial ports debugging tools.

2.4 Improvement of offline-test-mode

In order to improve the convenience of testing our robots, we modify former
offline-test-mode. To be more specific, we need to test our robots to confirm they
can communicate well with transmitter in certain frequency without operating
the computer to send the packet. So we add offline communication tests as a sub-
sidiary of offline-test-mode. In this mode, robots can automatically communicate
with the computer and tell us the test result through the Led.

3 Intelligent Control System

3.1 Hierarchical Architecture of Strategy

The software architecture of the intelligent control system is shown as Fig.2.
It is the central module for planning and coordination among robots in both
attack and defense modes. The whole system is composed of the World Model,
the Decision Module and the Control Module [1].

Decision |===mmemmememmmm e ————-

Module — | I

I
4] Lua Module = | 1
PIayBook o N B 1| Function Call F |

Bayes-fiter{GameState)

: 1
PlayMediator > | 1

Play . 1 I;
Play GhEETETy < | State Machine | |
Sy ! :

VisionUpdate f

‘ [visioninput | | HistoryMsg | [Localsensor | [oObjectPredictor | ‘

World Model

Fig. 2. Software architecture

The Decision Module is designed in a hierarchical structure, which is consist
of the PlayBook module [2], the Play module, the Agent module and the Skill
module. The PlayBook module selects the appropriate play by using a Bayesian
filter to evaluate the game status, as described in section 3.1.1. The Play module
focuses on coordination between teammates and is organized by a Finite State
Machine (FSM), as described in section 3.1.2. The Agent module emphasizes
on the planning skills of the single robot with the assigned tasks from the play.
The Agent module selects its behaviors from Behavior Tree (BT), as described
in section 3.1.3. The Skill module is a direct interface of the Decision Module

with the Control Module. The Skill module generates target point and selects
trajectory generation method, as described in section 3.1.4.

The Control Module is responsible for the path planning and trajectory gen-
eration. It traditionally uses the Rapidly-exploring Random Trees (RRT’s) al-
gorithm to find a feasible path and Bangbang-based algorithm to solve two-
boundary trajectory planning.

Finally, the World Model provides all the information of the match. The
History Message records all the decisions from the Decision Module. Besides, the
Vision Input means the original vision messages from two cameras, the Local
Sensor Message is uploaded from the robots via wireless. The Object Predictor
algorithm mainly focuses on our robots’ real velocity information in a time-
delayed system, and a Kalman Filter method is appropriate for this situation.
Thus, the closed-loop system adjusts all robots’ behavior according to the change
of the environment in real time.

Game State Evaluation A basic problem in SSL is when to attack and when
to defend, which means we should evaluate the game status based on observed
information. But it’s very complicated due to the complexity of game situation.
If only the observation is taken into account, the evaluation result will be easily
impacted by momentary sensing error, such as ball missing and robot misiden-
tification. Imagining an evaluator only considering ball’s position, then a wrong
location of the ball would lead to a huge impact on the choice between attack
and defense.

Thus, we propose a new method based on the Bayesian Theory [4], which
evaluates the game state by combining the observed information and the histor-
ical strategy. The new evaluator of the game status is shown as Fig. 3,

Observed Info: Game State : xy, Strategy :

2, P(zrg) = f(Tk-1, 2k, uk) ug

Fig. 3. Bayes-based evaluation method

where zj is determined by the observation, u; denotes the attribute of current
play script, which can be discretized into values such as 0(attack), 1(stalemate),
2(defense), the game state xy, is calculated using a Bayesian filter method. Fig.
4 depicts the basic Bayesian filter algorithm in pseudo code.

Fig. 5 gives a practical application of Bayes-based filter in the system. We
define three states for the game and there are corresponding plays for each state.
The selection and switch of the plays is up to the result of the filter. Furthermore,
there also exists a score-evaluating mechanism between the plays with the same
attribute, this mechanism is realized by the PlayBook module.

The proposed method has two main features:

Algorithm Bayesian filter p(zx,ur,2x)
for all z; do
plze) =22, p(zklug, or—1)p(ar-1)

p(ar) = np (2o,)D(ak)
end for

Fig. 4. General algorithm for Bayesian filter

{ Vision Zk Bayes Filter uk
Module (xkil)

Fig. 5. Bayes Processing Flow Chart

— More stable: Compared with the evaluation method that only considers
observation, our evaluator gives a more appropriate analysis of the game
state and helps to reduce the perturbation of the strategy and to strengthen
the continuity of the strategy.

— More flexible: The values of prior probabilities p(x|ug, xx—1) and p(zk|zk)
is predefined in code according to different team’s characteristics, making
it more convenient and flexible to configure the attacking and defending
strategy.

Play and Finite State Machine Each play represents a fixed team plan
which consists of many parts, such as applicable conditions, evaluating score,
roles, finite state machine and role tasks, based on CMU’s Skill, Tactics and
Plays architecture [2]. The plays can be considered as a coach in the soccer
game, who assigns different roles to robots at different states.

For a play script, the basic problem is “What should be done by Whom at
What time”. So we develop a novel FSM-based Role Match mechanism. Tradi-
tionally, a state node is described by the execution and switch condition [2]. We
coupled a role match item in each state node to this basis. The new framework
is shown as Fig.6, a role match item comprises several matching groups with
priority, the priority determines the groups’ execution order. Our goal is to find
an optimal solution for every group by Munkres assignment algorithm [3], us-
ing the square of the distance between the current positions of the robots and
expected roles’ target positions as the cost function. In the implementation, we

just consider five roles matching in the scripts, because the goalie corresponds a
fixed robot by default.

3 Groups

7 L
A (LS)DM]

“““““““ ©OHigh by LW

{ }:No Match
():Match Once
[]:Match Always

Fig. 6. FSM-based Role Match Framework. A role match item’s syntax is described on
the right: the letter in the string is short for the role’s name in the state node(A-Assister,
L-Leader, S-Special, D-Defender, M-Middle). We offer three modes for matching, No
Match means to keep the role as same as last state, Match Once means match the role
once stepping into this state, and Match Always means do role match every cycle. If a
robot is missing, then ignoring the last role in the item and No Match group always
has a higher priority.

Agent and Behavior Tree Agent-level is responsible for the behavior planning
such as manipulating ball to proper region, passing ball to a teammate and
scrambling ball from the opponent, when a play-level decision is made. The main
work of agent-level is to select a proper skill and the best target for the executor
in each cycle. In order to make the behavior selection more intelligent and human-
like, we build a behavior tree, which consists of a set of nodes including control
nodes and behavior nodes.

— Control Nodes are utilized to set the logic of how different behavior nodes
should be connected. In our agent behavior tree system, there are mainly
three types of control nodes as shown in Fig.7. The first type is a sequence
node that ensures all of its child nodes will be executed in a deterministic
order if the precondition of the children node is satisfied. For example, as
shown in Fig.7(a), when the precondition of the root node is satisfied, the
step 1 node will be executed. After the step 1 node has been executed and
the precondition of the step 2 node is satisfied, the step 2 node will be
executed. This rule will last until the last child node is executed. The second
type is a loop node which works like a counter. The execution of its child
node depends on two conditions: one is that the precondition of this node is
satisfied; the other is that the control node should have been executed for a
predefined time period as illustrated in Fig.7(b). The third type is a priority
selector node which executes its children nodes actions according to their
priority. When the preconditions of a node with the higher priority have
been satisfied, the existing node will be interrupted and the executing of the

node with the higher priority will be executed, see Fig.7(c). All the nodes
are associated with external preconditions that must be satisfied before the
executing of the node. These preconditions should be updated before the
update of the behavior tree.

Loop
Counter = Counter +1
t " \ Counter _an
) 00 Precondition " geached Precondition
Precondition Yes 1
[1 1
1 1 interrupt
Stepl ... Step N " Precondition Precondition
—_——) - Precondition
Precondition High Priority Low Priority
(a) (b) (c)

Fig. 7. Three types of control node: (a)sequence node; (b)loop node; (c)priority selector
node

— Behavior Nodes are simply a set of atomic skills such as going to a specific
position. They are all leaf nodes of a behavior tree and saved in an atom skill
factory. They are also associated with preconditions that should be satisfied
before executing.

Skill Skill is a set of basic knowledge of actions different robots can perform,
such as how to move to a point, how to get the ball and kick. Some skill will
generate a next target point, which will be passed to the navigation module
for path planning and trajectory generation. Some skill will generate the speed
trajectory for some special behavior such as pulling the ball from an opponent
front. Parameter tuning is always an important work for skill’s performance in
the competition.

3.2 Defense Strategy in AI System

In this section, we mainly introduce our defense which is a vital part for com-
petition and a superiority of our team. We only lost one point in the RoboCup
2014 tournament, which verifies the effectiveness of our strategy. Our defense is
called Close-Marking Defense.

A flow chart of Close-Marking Defense is shown as Fig.8. We get the infor-
mation about all opponent robot and calculate feature value. According to the
attribute value we will match the role for every opponent robot,such as leader,
passer, etc. Then attack array is set up to describe the robot in order and design
defense strategy at last.

Feature Value We calculate all feature values for every opponent robot accord-
ing to vision messages. Feature values, which is used to estimate the threatening

Vision ,’ Feature Rola
Message Value » Match

Defense Assign Attack
Script « Task « Array

Fig. 8. Defend flow chart

level, reflects the state of opponent robots. We have more than a dozen of fea-
ture, some are simple value which can be calculated by vision message according
to some obvious geometrical relationship, just like the distance between robot
and ball, the distance between opponent robot and our goal, shoot angle and
so on. The other are some complex feature value which can be calculated by
simple feature value, just like Touch Ball value(the ability to receive ball and
shoot), Chase Ball value(the ability to chase all and shoot), Pass Ball value(the
ability to chase and shoot). For example, Touch Ball value of an opponent robot
depends on the shoot angle of the opponent robot, whether other robots block
in the pass line, the distance between the robot and our goal. All These features
will be used in the next step opponent robots role matching.

Opponent Robots Role Match Different roles have different priorities. A
default role group includes:

— receiver is an offensive role which receives the ball and finishes shooting.
— leader is an offensive role which controls the ball.

— attacker is an offensive role which is always ready for the attack.

— defender is a defensive role which takes part in defense strategy.

goalie is the goalie.

The role matched degree is calculated according to the features of robot. For
example, when we judge whether the robot is a receiver, we will use three feature
value: Touch Value(the ability to receive ball and shoot), Chase Value(the ability
to chase all and shoot), Receive Angle(the angle between ball receiving and ball
shooting). Matched degree will be calculated for each robot in priority decreasing
order.

Attack Array Attack array is a list of opponent robots. In attack array, We
generate the attack array according to the match result. Now every opponent
robot has their role and the matched degree for this role. We can compare the
role priority and matched degree to set up attack array. But we don’t need to
mark for certain roles, such as goalie, opponent blocker in kick off area, which
should be ignored.

Design Defend Script We design our defence script in the form of a Finite
State Machine[6]. The task is assigned in a state and can receive a parameter

which is a number representing the order in attack array. So the robot will defend
the corresponding opponent in attack array.

There is an example to demonstrate our defense. Fig.9 shows the task assign-
ment in the defense script. Defend Kick is a task defending the opponent robot
which takes the free kick. We can see marking task receiving a parameter which
is just an order in the attack array.

A simulation is shown as Fig.10. Yellow team is the attack side. There are
five attackers, four are of attacker role, and one is of leader role. Their defense
superiority order is 4-3-1-5-2.

['DefendState"] = {
Leader = task.defendKick(),
Special = task.marking("First"),
Middle = task.marking("Second"),
Defender = task.marking("Third"),
Assister = task.marking("Fourth"),
Goalie = task.goalie(),

Fig. 9. a part of defense script Fig. 10. defense simulation

4 Conclusion

Owing to our all team member hard work, we can obtain this result. If the
above information is useful to some new participating teams, or can contribute
to the small size league community, we will be very honor. We are also looking
forward to share experiences with other great teams around the world.

References

1. Yonghai Wu, Penghui Yin, Yue Zhao and Yichao Mao, Rong Xiong: ZJUNlict Team
Description Paper for RoboCup2012. In: RoboCup 2012 (2012)

2. B. Browning, J. Bruce, M. Bowling and M. Veloso: STP: Skills, tactics and plays
for multi-robot control in adversarial environments. In: J. Syst. Control Eng., vol.
219, no.I1, pp. 33-52 (2005)

3. J. Munkres: Algorithms for the assignment and transportation problems. In: Journal
of the Society for Industrial & Applied Mathematics 5.1: pp. 32-38. (March 1957)

4. S. Thrun, W. Burgard, and D. Fox: Probabilistic robotics. Vol. 1. Cambridge: MIT
press (2005)

5. R. Ierusalimschy. Programming in Lua. Lua.org, 2nd edition (2006)

6. Yonghai Wu, Yue Zhao, Rong Xiong, ZJUNlict Team Description Paper for
RoboCup2013 (2013)

