
Stanford Robotics Club
2014 Team Description

Payton Broaddus, Ben Johnson, Brian Jun, and Rohan Maheshwari

Stanford Robotics Club, Stanford University, Stanford CA USA
{broaddus, benj2, bjun2, mrohan}@stanford.edu

http://roboticsclub.stanford.edu/

Abstract. This paper describes the Stanford Robotics Club’s RoboCup
Small-Size League team. Low-cost brushless DC motors are driven with
sinusoidal commutation with an adjustable phase offset to account for
manufacturing variations. A linear motor kicker is presented which is
expected to have significantly better efficiency than current solenoid de-
signs.

1 Introduction

The Stanford Robotics Club is a student group started at Stanford University in
the fall of 2012. Members include undergraduates and graduates from a variety
of majors. This RoboCup Small-Size League team is one project being developed
by the club. We have built prototype robots to validate the design, and we will
build a fleet of seven robots (six players and one spare) for competition. Two
generations of prototype robots are shown in figure 1.

Fig. 1. Prototype robots.

http://roboticsclub.stanford.edu/

2

2 Robot Hardware

All robots on the team are identical. Each has four omni wheels, one kicker, a
protective shell, and a lid matching the league’s standard vision pattern. Each
robot is powered by two two-cell lithium polymer battery packs wired in series.

The majority of robot components are designed to be low-cost and easy to
fabricate. Most components have been prototyped in laser-cut acrylic and will be
remade in waterjetted aluminum for final production. No CNC-milled parts are
required, although modified off-the-shelf gears are used in the drivetrain. The
conversion from laser-cut to waterjet parts will require few or no changes, solely
to account for different tolerances in the fabrication processes.

2.1 Size and rule compliance

All robots fit inside a cylinder 179mm in diameter and 149mm in height, as
measured on a hard surface with the wheels rotated to achieve the maximum
robot height. At most 19% of the ball’s area as seen from above will be inside
the robot’s convex hull. The ball’s motion is limited by stops to prevent the ball
from moving too far into the robot.

2.2 Electronics

Most of the robot electronics are on a single printed circuit board which contains:

– Motor drivers.
– An XC6SLX9 FPGA for timing-critical motor control.
– A MPU6000 six degree-of-freedom inertial measurement unit (IMU).
– Connections for off-board sensors, batteries, and kicker electronics.

Each motor driver consists of three L6743Q MOSFET drivers and three
STL40DN3LLH5 dual MOSFETs per motor. A current sense amplifier and ADC
monitors the current through the lower half of two half-bridges on each motor,
allowing the current through all three motor phases to be known on a cycle-by-
cycle basis. This is intended to allow field oriented control to be implemented in
the future to achieve precise control over torque.

A Raspberry Pi single board computer is mounted on top of the control
board. The Raspberry Pi was chosen to simplify board design while providing
convenient debugging facilities and enough computing power for possible future
features like IMU-based motion control.

The radio is a Texas Instruments CC1101, which can operate over a wide
range of frequencies include both European and US license-free bands.

An Invensense MPU-6000 inertial measurement unit is included to support
future development of on-board motion control in a field coordinate system
rather than in robot-oriented coordinates.

The robot’s identity is determined by a replaceable lid on top of the robot.
While the vision system can identify the robot by the pattern of dots on the

3

lid, the firmware identifies the robot by a conductive pattern attached to the
bottom of the lid. The pattern consists of a thin sheet of metal partially covered
by a laser-cut polyester mask. A set of spring pins extend from a small circuit
board near the top of the robot to contact this pattern. The pattern cut into the
mask is detected by continuity between signal pins and two ground pins. The
set of patterns is chosen to allow the robot to be correctly identified even if any
one pin fails to make contact and for a missing lid to be detected. This design
makes changing robot teams and identities very fast at half-time and reduces
the opportunities for human error that would result from using a switch on the
control board.

2.3 Drivetrain

The performance goals for the drivetrain are a maximum speed of 4m/s and a
maximum acceleration of 5m/s2 with a mass budget of 2.5kg. The actual achiev-
able speed and acceleration will likely be limited primarily by traction between
the wheels and the carpet. Since the prototype wheels are laser-cut and have
poor traction, the performance of the final wheels is unknown but is expected
to be significantly better than for the prototype.

The motor is coupled to the wheel by brass gears with a gear ratio of 1:2.2.
Each wheel is an omni wheel with 15 rollers.

2.4 Motors

The motors are off-the-shelf quadrotor motors, model AX-4006D, which are mod-
ified by changing the connections of the windings from a delta to a wye config-
uration while keeping original windings. This modification reduces the speed
constant from 530RP M/V to 300RP M/V , allowing the use of a smaller gear ra-
tio than would be possible with the stock wiring. This motor is similar in size
to the Maxon EC-45 which is commonly used in the Small Size League, but
is significantly cheaper ($31 compared to $100), has lower internal resistance
(0.8Ωcompared to 1.2Ω), and is easier to modify.

This motor does not have internal hall effect sensors. An incremental optical
encoder attached to the back of the rotor provides high resolution relative po-
sition measurements for commutation and speed control. The encoder consists
an Avago AEDR8300-1K sensor and a custom codewheel with 256 lines per rev-
olution cut from an 8000DPI photoplot and mounted on a reflective disc. The
arrangement of these sensors is shown in figure 2.

The position of the sensors relative to the stator windings varies among
motors due to manufacturing variation. We drive the phases at points sampled
from three sine waves 120◦ apart but with an additional phase offset determined
by the physical position of the sensors:

VA =Vpeak sin (θsensor + θoffset)
VB =Vpeak sin (θsensor + θoffset + 120◦)
VC =Vpeak sin (θsensor + θoffset + 240◦)

4

θsensor is the magnetic position of the rotor as measured by the hall effect sensors
and the optical encoder. θoffset describes the relationship between the sensors
and the stator windings. θoffset is determined by an automatic alignment process
which attempts to maximize speed while applying a constant voltage magnitude.
With the robot held off the ground, a DC current vector is applied to the stator
to bring the rotor into a fixed position relative to the stator. The encoder position
(relative to its arbitrary reset position) now indicates the stator current phase
which is approximately 90 degrees away from θoffset. Sinusoidal commutation
is then applied to the motor while θoffset is adjusted over a small range and
the θoffset which produces the maximum speed is recorded. This process is
repeated for each motor. The alignment needs to be performed only once after
the encoder counters are reset, which happens during FPGA reconfiguration.
The θoffset for each motor is stored in the FPGA so firmware restarts do not
require realignment.

Fig. 2. Motor and encoder.

2.5 Kicker

The standard kicker design in the Small Size League is a solenoid powered by a
capacitor bank. This design is simple but has several drawbacks:

– Large mechanical stresses due to high acceleration.
– Difficult mechanical integration due to the size of the capacitors.

5

– Poor efficiency due to the long travel of the armature.
– Difficult electrical design due to the large currents required.

The force exerted by a solenoid decreases with the displacement of the armature,
leading to low force near the beginning of travel and exceedingly high force near
the end of travel.

We are developing a different type of kicker based on a custom permanent
magnet synchronous linear motor. The kicker consists of a stator and a forcer.
The stator is two steel plates, each with a row of magnets having alternating
poles along the direction of travel. The forcer slides along rails with small linear
bearings and contains three coils. High-flex-life wires connect the forcer coils to
their electronics.

The design goals are:

– Maximum final speed: 8m/s

– Travel distance: 10cm
– Peak current: ≤50A
– Peak voltage: ≤100V
– Forcer mass: 45g
– Efficiency: ≥15%
– Recharge time: ≤1s

To achieve the designed travel distance, the average net force is 15N and the
travel time is 23ms. Efficiency is defined as kinetic energy in the ball divided by
electrical energy supplied to the kicker.

Fig. 3. Linear motor kicker prototype with one row of magnets.

While this design will require a capacitor to store energy for each kick, it can
be considerably smaller than the capacitors required for a solenoid kicker.

During a kick, the forcer impacts a kicker plate which then impacts the
ball. The kicker plate and forcer weigh slightly less than the ball so that nearly
all kinetic energy is transferred to the ball, but the kicker components bounce
backwards and can be stopped by electromagnetic braking (shorting the coils).

6

The purpose of the forcer plate is to allow the type and shape of the material
that impacts the ball to be adjusted for efficiency and accuracy of kicking.

A linear motor kicker can achieve higher efficiency than a solenoid kicker
because it produces a lower, continuous force rather than a high peak force,
which leads to a lower peak current requirement. This also makes the electrical
design easier because the maximum voltage and current required is significantly
lower. By using less energy per kick, kicks can be performed more frequently,
giving a robot more opportunities to recover from a failed kick attempt.

Two linear hall-effect sensors mounted on the forcer measure the stator’s
magnetic field to control commutation.

Off-the-shelf linear motors are not suited to this application because they
have heavy forcers and large coils intended for continuous operation. Our kicker
will operate no more than once per second, allowing the use of small, lightweight
coils which are cooled by the steel forcer plate.

This kicker design has several advantages over a solenoid:
– Higher efficiency.
– No need for a return spring.
– Can kick in two directions.
– Smaller electronics.
– Less mechanical stress on robot components.
– Monitoring of performance during a kick via hall effect sensors.

The disadvantages compared to a solenoid kicker are:
– More complicated electronics.
– Potentially higher latency due to lower acceleration.
– Higher cost, mainly due to the permanent magnets.

The ability to drive the kicker in both directions opens up a new possibility
for gameplay in the Small Size League: a robot may kick the ball from either
end of the kicker as long as the 20% ball coverage rule is obeyed when the ball
is against the rear of the robot. A possible use for this ability is to perform flat
kicks from one end of the kicker and chip kicks from the other end, eliminating
the need for two separate kicking mechanisms. We intend to implement this
technique if time permits.

The current prototype of the kicker has been tested only at low power and
with a 16V supply. Based on low-power measurements, the prototype is esti-
mated to require less than 30A for a full-power kick. The major design questions
are whether an ironless or slotless steel forcer is preferable and what type of linear
bearings to use. The forcer slides on steel shafts with SAE 841 oil-impregnated
bronze bearings.

3 Software

3.1 Log File
To aid testing and development, the first part of the software system that was
written was the logging facility.

7

A log file contains a sequence of messages, each with an associated time and
type. At this level, a message is treated as a binary blob with meaning only to
the subsystem which read or wrote it.

The log file format has these design goals:

– Fast sequential writes: The writer is able to write entries rapidly to the end of
the file. It is not necessary to append to an existing log file, as it is expected
that a log file is only written once. The writer is able to write arbitrarily
large log files without keeping in memory a correspondingly large amount of
indexing data.

– Fast random-access reads: The reader can read sequentially or semi-sequentially
from the log file. The reader can seek to arbitrary locations in the log file.

– Indexing: The reader is able to quickly load any necessary indexing data
from the log file. Reading arbitrary messages doesn’t require reading the
entire file.

– Crash tolerance: If a writer crashes while writing the log file, only unwrit-
ten messages are lost. Indexing data for messages which have already been
written is not lost.

Most log messages are serialized with Google Protocol Buffers [1]. A log
file consists of a file header and a sequence of chunks. Each chunk consists of
a chunk header, an index for that chunk, and a sequence of messages. Each
chunk header starts with the total size of the chunk and the number of messages
in it. This format allows a reader to quickly scan through a large log file and
find the locations of all chunk headers and the total number of messages. The
chunk headers and indexes for the entire file can be read quickly with minimal
processing and without reading any message data.

When writing a log file, the number of messages per chunk is typically fixed,
except for the last chunk. When the first message in a chunk is written, space
for the chunk header and index is reserved. After the last message in a chunk is
written, the writer goes back and writes the chunk header and index together.

3.2 Simulation

A simulator allows for rapid development and testing, and provides a reasonable
approximation of the types of errors seen when operating real hardware. Vision
data has added noise, the cameras can be misaligned, objects can disappear with
a configurable probability, the ball can be occluded by robots, and vision data is
delayed by a configurable latency to simulate processing delays. The simulation
is based on the Bullet physics library.

3.3 Infrastructure

The software system consists of an infrastructure layer, which includes the user
interface (figure 4), logging, and I/O; and a gameplay layer, which includes
world state filtering, motion control, and strategy. Infrastructure, filtering, and

8

Fig. 4. Main interface showing log playback.

planning is written in C++, while the top-level gameplay code is written in Lua.
The Lua code executes under LuaJIT [2] which provides good performance with
the convenience and brevity of a simple, dynamically-typed language. A console
is provided to allow Lua commands to be given by the user to directly modify
the state of the gameplay system. Configuration is stored in Lua files and can
be automatically reloaded when edited to allow quick changing of parameters.
Using a simple language like Lua allows test cases to be quickly written to
validate parts of the system as they are developed.

The software allows the user to move through logged data while the system
is running or to view recorded data from previous runs. The user can move to
a specific time and can scroll through time at variable speed. All displays follow
these controls, allowing every part of the display to be shown as it was at an
earlier time.

Graphical annotations can be added to the field view by software at any level.
These annotations are grouped into layers whose visibility can be toggled by the
user. They are recorded in the log and can be viewed historically along with
other log data. Arbitrary text can also be added to the log, which is displayed
in a separate pane and can also be viewed historically.

A checklist is displayed in the main window which shows the status of major
sources of data. This allows the user to quickly confirm that the system is ready
to play a game by verifying that vision data from both cameras is being received
at the proper framerate, referee data is being received, all data is being logged
to disk, and all robots are communicating correctly. This removes the need for
any lengthy manual confidence test before a game and helps identify network
problems.

9

3.4 Latency Correction

Latency from camera vision is a problem for the robots to identify their current
position and orientation. Without any latency correction, robots will constantly
overshoot their target position and orientation, potentially not reaching the tar-
gets. To measure the latency, we send out a sinusoidal angular velocity command
to one robot. Since the actual orientation of the robot would follow the shape of
a cosine wave (integral of the sine wave velocity), we then calculate the delay of
the camera’s vision with:

delay = T

2 + T

2πatan2
(∑

sin (t) posobs (t) ,
∑

cos (t) posobs (t)
)

where:

delay=latency calculated (seconds)

T = period of the velocity sine wave (seconds)

posobs (t) = camera’s current raw position

The observed poses of the robots are extrapolated for the latency time ac-
cording to the commands sent to the robots during that time.

3.5 Motion Control

Each robot moves along a path generated by a rapidly-exploring random tree
(RRT) algorithm [3]. Robot paths may be planned individually, giving early
plans more freedom of movement for high-priority tasks, or simultaneously, al-
lowing robots to avoid each other throughout a lengthy plan. Simultaneous plan-
ning is achieved by defining the state space to include the pose of multiple robots
at a single point in time.

Virtual obstacles can be created to prevent robots from entering or leaving a
region of the field. This facility is used to implement some rules and performance
tests, and to test the operation of planning techniques. If a robot is inside a
virtual obstacle, the planner ignores that obstacle until the plan exits it, at
which point the same obstacle cannot be re-entered.

A robot’s path consists of a sequence of path segments, each of which is
defined as position and velocity as a function of time. A PID controller on
the central computer generates robot velocity commands based on the error
between the path’s desired pose and the robot’s current pose as estimated by
a Kalman filter. The robot velocity commands are rotated into each robot’s
frame of reference based on its predicted orientation at the time the command
will be executed and then transmitted to the robots. If the path segment PID
controller’s error exceeds a fixed threshold, the robot is considered to have failed
to execute the segment and a new plan is calculated based on the robot’s current
esimated pose.

10

A robot’s path is not modified unless it fails to execute or unless the gameplay
situation changes enough that the old plan is no longer applicable. In particular,
the path is not regularly updated based on estimated pose since that would
incorporate esimation errors into the plan.

Special-case velocity profiles can be planned for movement other than along
piecewise-linear paths. For example, a robot lining up to kick the ball can pivot
around the ball’s center at a constant angular velocity, which is more easily
achieved by directly generating velocities than by continually adjusting a plan-
ning target position. In this case, the effective size of the robot for obstacle
avoidance purposes will be increased to guarantee enough space to execute the
special movement without collision.

3.6 Gameplay
Gameplay is structured as a tree of behaviors. The team is, at the highest level,
controlled by a state machine which responds to referee commands and selects a
top-level behavior. Each top-level behavior delegates control of robots or groups
of robots to further behaviors until a leaf behavior generates a command to
be sent to its robots. The goalie is a special case, since the goalie behavior
always applies to a particular robot, but the goalie can be given temporary new
behaviors to allow cooperation with other players, such as if the goalie needs to
clear a ball from its defense area by passing to another robot.

To obey gameplay-related rules, a state machine tracks referee commands
and some basic state of the game and toggles a number of boolean constraints.
These constraints include the presence of virtual obstacles on the field, such as a
1m diameter circle around the ball during stoppages, and behavioral constraints,
such as selecting a different robot to touch the ball after a restart.

To allow the team’s behavior to be quickly and easily modified, high-level
behavior is controlled by Lua code which can be edited and reloaded without
restarting the rest of the software system. This approach facilitates develop-
ment of a variety of behaviors and also allows changes to be made during short
timeouts with minimal disruption to the pace of the game.

4 Development Plan

The robots we have built so far are prototypes. Some parts are made of laser-cut
plastic for rapid prototyping and will be replaced with waterjet-cut aluminum
to increase robustness. The electronics and drivetrain design are finalized and
the chassis and kicker designs are being finished.

The major development tasks that will happen by June 2014 are:
– Finish the kicker design and perform experiments to characterize its perfor-
mance.

– Build the remaining robots to complete a team of seven (six playing plus
one spare).

– Implement behaviors and constraints to cover all rule cases.
– Continue developing gameplay.

11

References

1. Protocol Buffers - Google’s data interchange format. http://code.google.com/
p/protobuf/

2. The LuaJIT Project. http://www.luajit.org/
3. Bruce, J.; Veloso, M.; , "Real-time randomized path planning for robot naviga-

tion," Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference
on , vol.3, no., pp. 2383- 2388 vol.3, 2002. http://www.cs.cmu.edu/~mmv/papers/
02iros-rrt.pdf

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://www.luajit.org/
http://www.cs.cmu.edu/~mmv/papers/02iros-rrt.pdf
http://www.cs.cmu.edu/~mmv/papers/02iros-rrt.pdf

	Stanford Robotics Club 2014 Team Description
	Introduction
	Robot Hardware
	Size and rule compliance
	Electronics
	Drivetrain
	Motors
	Kicker

	Software
	Log File
	Simulation
	Infrastructure
	Latency Correction
	Motion Control
	Gameplay

	Development Plan

