
RoboTurk 2011 Team Description

Kadir Firat Uyanik1, Mumin Yildirim1, Salih Can Camdere2, Meric Sariisik2

1Department of Electical Engineering
2Department of Mechanical Engineering

Middle East Technical University (METU)
06531 Ankara, Turkey

kadir@ceng.metu.edu.tr

{mumin.yildirim,salihcan.camdere,meric.sariisik}@ieee.metu.edu.tr

Abstract. This paper briefly explains the current development status
of the recently reforming RoboCup Small-Size League(SSL) robot team,
RoboTurk. RoboTurk SSL robot system is being designed under the
RoboCup 2011 SSL rules so as to participate in RoboCup competition
being held for the first time in Turkey.This year we have made crucial
changes in the 2009’s design, and in fact, all the hardware and software
modules are being redesigned. Most of the effort have been spent on the
mechanical structure of the robot, motor driver board, and ROS [1] based
software architecture with the improved simulated robot in Webots[2].

1 Introduction

RoboTurk RoboCup SSL robot system is a project that’s been studied by the
members of IEEE METU Student Branch Robotics and Automation Society
(IEEE METU RAS) since 2008. However, being undergraduate students as well
as dynamically changing society members has slowed down the course of devel-
opment considerably. After more than one year of development gap, this year we
gathered a new team for the sake of hosting the RoboCup Competition in our
home country, and re-designed most of the modules less than a few months.

We can divide the current system into two main parts, one is the sensori-
motor unit of the system namely ssl-robots and the other is central decision
making unit, called ssl-game-planner, with the the assumptions that the 2-D
pose of the proponent and opponent robots and the position of the ball are
provided with respect to the field reference frame as well as game state is al-
ready available specifying the allowed formations of the robots under the rules
of robocup-ssl.

The major improvements we have done so far can shortly be listed as follows:

– Mechanical design; we have decreased the weight of the chasis from 1.9kg to
1.4kg by the factor of almost 25% with the new design based on the Skuba[5],
and BSmart[6] teams’ designs. Many improvements are done on the wheels
themselves and the wheel assemlies.



2 RoboTurk 2011 Team Description

– Motor control board design; we have replaced the earlier control circuit
which happened to be unreliable from time to time, especially during sudden
changes in the acceleration.

– Software design; we have started developing a robocup-ssl stack on ROS. In
this design, we also started adding ROS support to the ssl-vision [3].

In the following section we state the details about the current develop-
ment stage of the two main units of the current system, ssl-robots and ssl-
game-planner, including new developments and the planned extensions until the
RoboCup’11 competition.

2 SSL-Robots

As it’s name implies SSL-robots unit consists of the ssl-robots which are then
can be decomposed into mechanical and electrical sub-units. First, we describe
the mechanical elements, then we describe the electrical parts needed to drive
the mechanics.

Fig. 1. RoboTurk 2011 robot

2.1 Mechanical Design

The mechanical system will consist of the case of the robot, motors, kicking
mechanisms, dribbler, solenoid and wheels. The case will be limited to 18cm in
diameter and 15cm in height. In mechanical point of view motors, solenoids,
batteries, sensors and digital cards should occupy the smallest volume possible.
Our earlier chassis design was more than 1900 grams; however, as a result of our
latest improvements, we decreased our chassis to 1419 grams excluding circuit
boards. In the following sections we will describe the omniwheels, motors, kicker,
and dribbler parts.



RoboTurk 2011 Team Description 3

Fig. 2. RoboTurk 2011 robot mechanical design

Omni-wheels Omni-wheels allow the robot to move in any direction without
having to rotate, or move on a line and rotate at the same time so that the
robot can reach the destination at the correct angle. This makes path planning
and following quite easy, and therefore it is widely used in RoboCup robots. In
previous years we used Kornylak Omni-wheels. However, these omni-wheels were
resulted in unstable motion. Therefore, this year we are using new omni-wheels
that were designed and built by our team. The new wheels have a diameter of
1.968 inches and have 15 rollers with rubber gaskets in order to increase the road
holding (Fig.1). Hence, the robots’ motion abilities have enhanced. Omni-wheels
are placed at 53 degrees with respect to the y-axis at the front and 45 degrees
with respect to the y-axis at the back. This configuration is the result of the
requirement that motors are uniformly loaded as well as there must be enough
space to accommodate the dribbler on the front.

Motors Each omni-wheel is driven by a 30 Watt-Maxon EC45 Flat Brushless
DC motor with hall sensors. These motors are small and compact; therefore they
save space in the robot.

Dribbler In this year’s design, we have also enhanced dribbler system. We are
going to use Maxon EC-16 brushless DC Motor in order to actuate dribbler part
of our robots since the dimensions of this motor fits the space constraints very
well. Also, we are planning to use a system which consists of gears and cogwheels
with the ratio of 2:1 instead of pulleys that are used in 2009’s design.

2.2 Electrical Design

This section includes detailed explanations about our motherboard and micro-
controllers, kicking and motor driver circuits and communication. Electronics
hardware consist of three main parts; the main controller board, motor con-
troller board and kicking control circuitry.



4 RoboTurk 2011 Team Description

Fig. 3. Our latest omniwheel design

Fig. 4. Dribbler design



RoboTurk 2011 Team Description 5

Main Controller Board In the first prototype of our 2011 SSL Robots main
controller board consists of a PIC16F88 and Xbee Series 2 RF transmitter. The
data packet sent from the central-control computer is received by Xbee by using
UART protocole. An RDA interrupt runs in PIC and it distributes the package
information to the motor controller board on I2C bus. The data packet sent on
the I2C bus consists of 5 bytes. First byte defines direction and on/off options and
rest four bytes includes speed data of each motor. Xbee is programmed to work
on 57600 baud, with no parity and one stop bits. Furthermore, a personal area
network is constructed for communication of each robot with the coordinator
Xbee which is directly coordinated to the central-control computer. Low baud
rate value is chosen due to the robustness of the system and PICs failure at higher
baud rates. PIC 16F88 acts as a coordinator. It receives the data package on
UART at 57600 baud rate. The data package is actually a string which contains
intended speed values for motors and directions for dribbler and kicker. The
coordinator PIC, also known as master PIC, uses a built-in SSP module (namely
I2C) in order to communicate with each PIC in motor controller board on I2C
bus. The infrared sensors positioned at dribbler part are directly connected to
this PIC. Therefore, this coordinator PIC can also transmit the information
about the ball possession.

Motor Controller Board Motor controller board consists of five independent
motor driver modules. Each module contains a PIC 16F88 and a L6235N brush-
less motor driver IC in order to drive four Maxon EC-45 flat to drive omni-wheels
and one Maxon EC-16 to drive the dribbler mechanism. L6235 has an internal
logic decoder to drive the brushless motor from the hall sensor states. It also has
internal MOSFEDS and MOSFED drivers. Thus, it is a clean and convenient
solution to drive brushless motors.

Fig. 5. Motor control board



6 RoboTurk 2011 Team Description

Kicker Controller Board Kicking control circuit contains a DC-DC booster
for charging a capacitor, and a capacitor discharging circuit for main kicking
solenoid. It supplies a feedback for voltage stablization at 200 Volts. The con-
troller of this booster is another PIC16F88 whose duty is to supply pwm for
booster toroid and maintain a stable capacitor voltage. The microcontroller is
controlled by main controller board only for kicking purpose. A 200 V , 2000uF
cappacitor is charged by DC-DC booster up tp 200 V in less than 4 seconds. A
simple voltage division method and ADC conversion is used to determine the
capacitor voltage. The capacitor is discharged on a tubular push type solenoid
which has 3280 turns @ 31 awg. A power transistor is responsible for switching
of the discharge. As a result the ball can be shot with the speed of 6.5 m/sec.

Fig. 6. Kicker control board

3 SSL-Game-Planner

SSL-game-planner unit can be investigated from two perspectives, software de-
sign and algorithmic content.

3.1 Software Design

This year, we have started to design our system by heavily using ROS graph
concepts to establish communication between the processes which are the nodes
in ROS network. Thanks to the message-based communication architecture, we
can easily replace the real robots with the simulated robots and ssl-vision with
the sim-vision (simulated vision) or the ssl-referee-box with the sim-refree (sim-
ulated refree) by making no change in the source code whatsoever.

Current architecture is shown in the figure 9. Most of the nodes are currently
under development and some of them are stub at the moment (viz. ssl refree,



RoboTurk 2011 Team Description 7

ssl sim refree and most importantly ssl game planner).

This graph prabably is going to be more simplified during a real game as it
is shown in the figure 7

Fig. 7. This figure obtained via the ROS rxgraph command which shows currently
running nodes in elliptical shapes and the topic messages in squared shapes. If an
arrow is going out from a node, it means that particular node publishes data to the
corresponding topic, and it is otherwise -subscribed to a topic- if an arrow in pointing
to the node.

We are also working on adding ROS support for the ssl-vision mostly devel-
oped by Zickler et.al[3] and became the standard vision system for the RoboCUP
SSL.

We are using Webots simulation environment for developing path planning
algorithms and state estimation filters as they are explained in the next section.
Since Webots is a commercial simulator and we are using trial version -soon
going to be expired-, we are considering to move our simulated robot design to
the Gazebo by using URDF and Xacro language, depending on our financial
status. This alternative seems to be reasonable since ROS fully supports Gazebo
simulator, and it is already included in several ROS distributions.



8 RoboTurk 2011 Team Description

Fig. 8. ROS graph of the current system obtained by the ROS rxgraph command.
Most of the nodes are currently stub-like. The nodes corresponding to the simulation
environment are -most of the time- expected to be mutually excusive with the non-sim
nodes (the nodes corresponding to the real environment). This figure best viewed in
the soft-copy of the document which enables reader to zoom in the figure and clearly
see the names of the nodes.

Fig. 9. Simulated robot in Webots simulation environment. It has exactly the same
number of rollers in the omniwheels, and it can kick, chip-kick the ball as well as dribble
although these behaviors are not developed in the current system.



RoboTurk 2011 Team Description 9

3.2 Algorithmic Content

We reached to the stage where ssl-robots can realize the commands given by
ssl-game-planner without colliding to the statical obstacles, following the path
close to the optimal/shortest path. In order to accomplish this ability, ssl-robots
should be able to project the velocity commands to each of the wheels that is
where Motion Control module plays the role.

Obstacle avoidance is satisfied with the well-known artificial potential fields
method. We have improved the method based on the object-grouping method
proposed in [4], which is explained in detail in the following sections.

3.3 Motion Control

Current robot design has an assymmetrically distributed four-omni-wheel base.
Wheel angles are, from the vertical line where robot points upward are 53◦ in
the front and 45◦ at the back. Motor velocities can be obtained by using the
following equation, where :

v1
v2
v3
v4

 =


sin(α) −cos(α) −r
sin(β) cos(β) −r
−sin(β) cos(β) −r
−sin(α) −cos(α) −r


vxvy
ω


In simulation, motors are currently controlled with PID controller, yet it

is not added to the actual robots since there are no encoders mounted to the
motors, yet.

3.4 Path planning

In the traditional artificial potential fields, every obstacle is handled seperately,
which prevents observing the overall picture of the environment. In this ap-
proach, visibility and proximity of the obstacles are also taken into consideration.
For instance, the obtacles which are close enough to each other are considered
as one obstacle(virtual) by grouping. Besides the obstacles which are not visible
to the agent -because of the other obstacles between them- are not considered
as obstacles which decreases the oscillations.

First, a linkability metric, say LINKDIST, should be defined which specifies
when to link obstacles. According to LINKDIST obstacles are linked to each
other starting from the nearest obstacle in the path. While linking, obstacles are
checked if they are visible to the agent. If an obstacle is not visible, it is simply
discarded. An obstacle is considered only once during linking process. That is,
linked obstacles form a linked list data-structure.

After linking, linked obstacles are merged to form a single obstacle which has
a proper radius so as to include all of the obstacles. The result of this process is
virtual obstacles which are used to apply repulsive forces on the robot.

With this method, we get rid of the local minima and oscillations problems
that are commonly encountered potential field based methods.



10 RoboTurk 2011 Team Description

Algorithm 1 Obstacle Programming

while preObstacleList.size() > 0 do
closestObstacle ⇐ getClosestObstacle()
if isV isible(closestObstacle) = TRUE then

tempObstacle ⇐ closestObstacle
repeat

if isLinkable(tempObstacle, preObstacleList[i]) = TRUE then
linkObstacles(tempObstacle, preObstacleList[i])
tempObstacle ⇐ tempObstacls− > Neighbor

end if
until preObstacleList.size() = 0

end if
virtualObstacle ⇐ closestObstacle
groupObstacles(virtualObstacle)
postList.pushback(virtualObstacle)

end while

Fig. 10. Closest obstacle and its neighbor obstacle are linked to each other and nwe
virtual obstacle makes obstacle C invisible to the robot (adapted from[4])

Fig. 11. Obstacle 3, 4 and 5 are linked to each other.They form a virtual obstacle
(adapted from [4])



RoboTurk 2011 Team Description 11

3.5 Game Planning

Our system is not able to perform higher level behaviors for the time being. We
have successfully implemented ball tracking behavior for the real robots, but
without encoders mounted on the wheels, robots are not able to respond to the
precise rotational actions. Due to this situation, ball-related behaviors are not
developed yet.

However, we are planning to stick to the commonly used hybrid hybrid de-
liberative/reactive control architecture and divide the planning problem into
different stages such as strategy, play and role.

4 Conclusion and Feature Work

In this document, we have shown the current development stage of the Robo-
Turk SSL robot soccer system. We have emphasized the major changes in the
mechanical design, motor control board, and software architecture. New robot
design will enable the system to react quickly to the changes in the game state,
as well as perform more efficient than the robot design we have developed in
2009.

We are planning to sutdy on the main focus of the RoboCup SSL domain
which is game-planning throughout the whole semester. Robots, on the other
hand, are going to be equipped with the Gumstix Overo-Fire single board com-
puters which then runs GumROS, a gumstix software development library run-
ning ROS communication methods.

With the very young and motivated team members (Mumin, Salih and Meric
second and first year undergraduate students, and Kadir being first year MS
student) we are planning to attend RoboCup’11 Turkey for the first time if the
chance is given.

Acknowledgments. Many thanks to the METU EEE department for providing
us with a laboratory to work on a RoboCUP project, and to the IEEE METU
Student Branch for their endless moral support. We also very grateful for their
support in the constuction of the prototype robots, to Sariisik Makina.

References

1. Quigley M., Conley K., Gerkey B., Faust J., Foote T. B., Leibs J., Wheeler R.,
and Ng A. Y. (2009). Ros: an open-source robot operating system. n International
Conference on Robotics and Automation, ser. Open-Source Software workshop.

2. Michel, O. Webots: Professional Mobile Robot Simulation, International Journal of
Advanced Robotic Systems, Vol. 1, Num. 1, pages 39-42, 2004

3. S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso: SSL-Vision: The
Shared Vision System for the RoboCup Small Size League. RoboCup 2009: Robot
Soccer World Cup XIII. Pg:425–436

http://sariisikmakina.com


12 RoboTurk 2011 Team Description

4. B. Zhang,W.Chen, M. Fei, An optimized method for path planning based on arti-
ficial potential field, Sixth International Conference on Intelligent Systems Design
and Applications (ISDA’06) Volume 3 (2006)

5. Wasuntapichaikul P, Srisabye J, Sukvichai K. Skuba 2010 Team Description. 2010.
6. Laue T, Fritsch S, Huhn K, et al. B-Smart Team Description for RoboCup 2010.


	RoboTurk 2011 Team Description
	Introduction
	SSL-Robots
	Mechanical Design
	Omni-wheels
	Motors
	Dribbler

	Electrical Design
	Main Controller Board
	Motor Controller Board
	Kicker Controller Board


	SSL-Game-Planner
	Software Design
	Algorithmic Content
	Motion Control
	Path planning
	Game Planning

	Conclusion and Feature Work


