<html><head><meta http-equiv="Content-Type" content="text/html charset=us-ascii"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><div class="">Hello,</div><div class=""><br class=""></div><div class="">sounds good, I'll take a look at the doc and the wiki page in the next days.</div><div class=""><br class=""></div><div class=""><div class="">Also, I think it is a good idea, to reduce the dimension e.g. using PCA of the</div><div class="">dataset before we train the network.</div></div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Marcus</div><div class=""><br class=""></div><div><blockquote type="cite" class=""><div class="">On 18 Apr 2016, at 11:05, Abhinav Gupta &lt;<a href="mailto:abhinavgupta440@gmail.com" class="">abhinavgupta440@gmail.com</a>&gt; wrote:</div><br class="Apple-interchange-newline"><div class=""><div dir="ltr" class="">Hi Marcus,<div class="">&nbsp; &nbsp;I'hv also created a wiki page on github.</div><div class="">&nbsp; &nbsp;<a href="https://github.com/abhinvgpta/mlpack/wiki/Example-of-Feed-Forward-Network-using-mlpack" class="">https://github.com/abhinvgpta/mlpack/wiki/Example-of-Feed-Forward-Network-using-mlpack</a></div><div class="">&nbsp; &nbsp;Please have a look.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Abhinav</div></div><div class="gmail_extra"><br class=""><div class="gmail_quote">On Mon, Apr 18, 2016 at 1:16 PM, Abhinav Gupta <span dir="ltr" class="">&lt;<a href="mailto:abhinavgupta440@gmail.com" target="_blank" class="">abhinavgupta440@gmail.com</a>&gt;</span> wrote:<br class=""><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr" class="">Hi Marcus,<div class="">&nbsp; &nbsp;I'hv preprocessed the&nbsp;<span style="font-size:12.8px" class="">Internet Advertisements dataset and implemented the example using FFN. I'hv created and shared a google doc with you where I'm adding some background information about the dataset and the method used.</span></div><div class=""><span style="font-size:12.8px" class=""><br class=""></span></div><div class=""><span style="font-size:12.8px" class="">I used the test case example.</span></div><div class=""><span style="font-size:12.8px" class="">If you get time can you please check my approach and let me know if I'm going in the wrong direction.</span></div><div class=""><span style="font-size:12.8px" class=""><br class=""></span></div><div class=""><span style="font-size:12.8px" class="">Thanks,</span></div><div class=""><span style="font-size:12.8px" class="">Abhinav</span></div></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br class=""><div class="gmail_quote">On Sat, Apr 16, 2016 at 2:52 AM, Abhinav Gupta <span dir="ltr" class="">&lt;<a href="mailto:abhinavgupta440@gmail.com" target="_blank" class="">abhinavgupta440@gmail.com</a>&gt;</span> wrote:<br class=""><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr" class="">Hi Marcus,<div class="">&nbsp; So I'll get started with the Internet Advertisements dataset and implement FFN for it, followed by Convolututional Network for it and FFN for&nbsp;Human Activity Recognition Using Smartphones dataset. I'm sharing a doc with you where I'll get started with the implementation of the first task (implementing FFN for Internet Advertisements dataset).&nbsp;</div><div class=""><br class=""></div><div class="">As I'm new to the process please let me know if you feel that I should change my methodology at some points.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Abhinav</div></div><div class=""><div class=""><div class="gmail_extra"><br class=""><div class="gmail_quote">On Thu, Apr 14, 2016 at 11:11 PM, Marcus Edel <span dir="ltr" class="">&lt;<a href="mailto:marcus.edel@fu-berlin.de" target="_blank" class="">marcus.edel@fu-berlin.de</a>&gt;</span> wrote:<br class=""><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word" class=""><div class="">Hello Abhinav,</div><div class=""><br class=""></div><div class="">nice to hear from you. You found some really interesting dataset and except for</div><div class="">the "Anonymous Microsoft Web Data Data Set" which is a categorical dataset, we</div><div class="">can definitely use the datasets for some neat examples. I like that none of the</div><div class="">datasets looks like the other. So we could show e.g that a convolution neural</div><div class="">network is the preferred model for the Internet Advertisements Data Set as like</div><div class="">maybe a standard feed-forward network. I guess, we should start with one of the</div><div class="">datasets first and see how things go, what do you think?</div><div class=""><br class=""></div><div class="">Thanks again, for taking the time to look into this.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Marcus</div><div class=""><div class=""><div class=""><br class=""></div><div class=""><blockquote type="cite" class=""><div class="">On 14 Apr 2016, at 00:58, Abhinav Gupta &lt;<a href="mailto:abhinavgupta440@gmail.com" target="_blank" class="">abhinavgupta440@gmail.com</a>&gt; wrote:</div><br class=""><div class=""><div dir="ltr" class="">Hi Marcus,<div class="">&nbsp; Sorry for the late response.&nbsp;</div><div class="">I'hv shortlisted these datasets, please have a look at them.</div><div class=""><span class=""><div style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" class=""><a href="http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements" style="text-decoration:none" target="_blank" class=""><span style="font-size:14.6667px;font-family:Arial;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap;background-color:transparent" class="">http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements</span></a></div><br class=""><div style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" class=""><a href="http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones" style="text-decoration:none" target="_blank" class=""><span style="font-size:14.6667px;font-family:Arial;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap;background-color:transparent" class="">http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones</span></a></div><br class=""><div style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" class=""><a href="http://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data" style="text-decoration:none" target="_blank" class=""><span style="font-size:14.6667px;font-family:Arial;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap;background-color:transparent" class="">http://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data</span></a></div><br class=""><div style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" class=""><span style="text-decoration:underline;font-size:14.6667px;font-family:Arial;vertical-align:baseline;white-space:pre-wrap;background-color:transparent" class=""><a href="http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame" style="text-decoration:none" target="_blank" class="">http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame</a></span></div><div class=""><br class=""></div><div class="">Please let me know if you find any one of them appropriate to mention in the example or if you have some comments regarding the datasets. In the meanwhile I'll be looking for more.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Abhinav</div></span></div></div><div class="gmail_extra"><br class=""><div class="gmail_quote">On Mon, Apr 11, 2016 at 6:11 AM, Marcus Edel <span dir="ltr" class="">&lt;<a href="mailto:marcus.edel@fu-berlin.de" target="_blank" class="">marcus.edel@fu-berlin.de</a>&gt;</span> wrote:<br class=""><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word" class=""><div class=""><div class="">Hello Abhinav,</div><div class=""><br class=""></div><div class="">sounds great to me. The UCI repository is probably a good start:</div><div class=""><a href="https://archive.ics.uci.edu/ml/datasets.html" target="_blank" class="">https://archive.ics.uci.edu/ml/datasets.html</a> Also sharing a doc so that we can</div><div class="">work together on it is a good idea. I look forward to hearing from you.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Marcus</div></div><div class=""><div class=""><br class=""><div class=""><blockquote type="cite" class=""><div class="">On 10 Apr 2016, at 10:01, Abhinav Gupta &lt;<a href="mailto:abhinavgupta440@gmail.com" target="_blank" class="">abhinavgupta440@gmail.com</a>&gt; wrote:</div><br class=""><div class=""><div dir="ltr" class="">Hi Marcus,<div class="">&nbsp; &nbsp;<span style="font-size:12.8px" class="">&nbsp;So I'll look for some datasets, make a list and will share them with you. Once we settle on the dataset I'll share a doc with the information about model, dataset and the example like you mentioned. And I think representing dataset with few neat images can be taken care of while choosing the dataset.</span></div><div class=""><span style="font-size:12.8px" class=""><br class=""></span></div><div class=""><span style="font-size:12.8px" class="">Please let me know if it sounds good to you.</span></div><div class=""><span style="font-size:12.8px" class=""><br class=""></span></div><div class=""><span style="font-size:12.8px" class="">Thanks,</span></div><div class=""><span style="font-size:12.8px" class="">Abhinav</span></div></div><div class="gmail_extra"><br class=""><div class="gmail_quote">On Sat, Apr 9, 2016 at 4:58 AM, Marcus Edel <span dir="ltr" class="">&lt;<a href="mailto:marcus.edel@fu-berlin.de" target="_blank" class="">marcus.edel@fu-berlin.de</a>&gt;</span> wrote:<br class=""><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word" class=""><div class="">Hello Abhinav,</div><div class=""><br class=""></div><div class="">I think it would be a good idea, to include some examples and to explain the</div><div class="">examples step by step; probably with some sort of background information about</div><div class="">the model and the dataset used. Maybe we can come up with some neat images, for</div><div class="">the dataset. If you like, you can start with that, don't feel obligated to do</div><div class="">so. Also, if you don't like the idea, that's also fine, in this case, we can</div><div class="">come up with other ideas.</div><div class=""><br class=""></div><div class="">Also, I'm not sure we should use the thyroid dataset for the examples, it's kind</div><div class="">of an uninteresting dataset, don't you think? Don't get me wrong, the dataset is</div><div class="">great and important, but maybe we can find something fancy.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Marcus</div><div class=""><div class=""><div class=""><br class=""></div><div class=""><blockquote type="cite" class=""><div class="">On 07 Apr 2016, at 08:09, Abhinav Gupta &lt;<a href="mailto:abhinavgupta440@gmail.com" target="_blank" class="">abhinavgupta440@gmail.com</a>&gt; wrote:</div><br class=""><div class=""><div dir="ltr" class="">Hii Marcus,<div class="">&nbsp; &nbsp;Sure I would love to collaborate with you. I'hv started going through amf's documentation.</div><div class=""><br class=""></div><div class="">I'hv successfully run the test cases as independent examples like I mentioned in the issue:&nbsp;<a href="https://github.com/mlpack/mlpack/issues/562" target="_blank" class="">https://github.com/mlpack/mlpack/issues/562</a> If you like we can include those, or come up with more different examples.</div><div class=""><br class=""></div><div class="">Please let me know the procedure you would like me to follow, to collaborate in an efficient manner.</div><div class=""><br class=""></div><div class="">Thanks,</div><div class="">Abhinav</div><div class=""><br class=""></div></div><div class="gmail_extra"><br class=""><div class="gmail_quote">On Wed, Apr 6, 2016 at 3:57 AM, Marcus Edel <span dir="ltr" class="">&lt;<a href="mailto:marcus.edel@fu-berlin.de" target="_blank" class="">marcus.edel@fu-berlin.de</a>&gt;</span> wrote:<br class=""><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hello Abhinav,<br class="">
<br class="">
sorry for the slow response. We think that the best documentation is written by<br class="">
the person who wrote the code. That doesn't mean, we don't appreciate any help<br class="">
with the documentation. I guess the person who wrote the code, has a different<br class="">
view on what might be helpful and what is trivial as another user. So, if you<br class="">
like we can combine both views and write a strong documentation, what do you<br class="">
think?<br class="">
<br class="">
The documentation should be based on the already existing tutorials, you could<br class="">
take a look at the amf tutorial. I think, it would be nice to include some neat<br class="">
examples.<br class="">
<br class="">
Thanks,<br class="">
Marcus<br class="">
<div class=""><div class=""><br class="">
&gt; On 03 Apr 2016, at 09:11, Abhinav Gupta &lt;<a href="mailto:abhinavgupta440@gmail.com" target="_blank" class="">abhinavgupta440@gmail.com</a>&gt; wrote:<br class="">
&gt;<br class="">
&gt; Hi Ryan, Marcus ,<br class="">
&gt;&nbsp; &nbsp; &nbsp; I'm interested in writing a basic documentation on how to use mlpack to build neural networks along with few basic examples (derived mostly from the test cases). If someone is already working on this I would love to collaborate with him/her.<br class="">
&gt; Also is there any standard procedure that you would like me to follow ?<br class="">
&gt;<br class="">
&gt; Thanks,<br class="">
&gt; Abhinav<br class="">
<br class="">
</div></div></blockquote></div><br class=""></div>
</div></blockquote></div><br class=""></div></div></div></blockquote></div><br class=""></div>
</div></blockquote></div><br class=""></div></div></div></blockquote></div><br class=""></div>
</div></blockquote></div><br class=""></div></div></div></blockquote></div><br class=""></div>
</div></div></blockquote></div><br class=""></div>
</div></div></blockquote></div><br class=""></div>
</div></blockquote></div><br class=""></body></html>