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Abstract. In many scientific disciplines experimental data is generated
at high rates resulting in a continuous stream of data. Data bases of pre-
vious measurements can be used to train classifiers that categorize newly
incoming data. However, the large size of the training set can yield high
classification times, e.g. for approaches that rely on nearest neighbors or
kernel density estimation. Anytime algorithms circumvent this problem
since they can be interrupted at will while their performance increases
with additional computation time. Two important quality criteria for
anytime classifiers are high accuracies for arbitrary time allowances and
monotonic increase of the accuracy over time. The Bayes tree has been
proposed as a naive Bayesian approach to anytime classification based
on kernel density estimation. However, the employed decision process
often results in an oscillating accuracy performance over time. In this
paper we propose the BT* method and show in extensive experiments
that it outperforms previous methods in both monotonicity and anytime
accuracy and yields near perfect results on a wide range of domains.

1 Introduction

Continuous experimental data in scientific laboratories constitutes a stream of
data items that must be processed as they arrive. Many other real world applica-
tions can be associated with data streams as large amounts of data must be pro-
cessed every day, hour, minute or even second. Examples include traffic/network
data at web hosts or telecommunications companies, medical data in hospitals,
statistical data in governmental institutions, sensor networks, etc. Major tasks in
mining data streams are classification as well as clustering and outlier detection.
Optimally, an algorithm should be able to process an object in a very short time
and use any additional computation time to improve its outcome. The idea of
being able to provide a result regardless of the amount of available computation
time led to the development of anytime algorithms. Anytime algorithms have
been proposed e.g. for Bayesian classification [19,23] or support vector machines
[5], but also for anytime clustering [13] or top-k queries [2].

The Bayes tree proposed in [19] constitutes a statistical approach for stream
classification. It can handle large amounts of data through its secondary stor-
age index structure, allows for incremental learning of new training data and is
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capable of anytime classification. It uses a hierarchy of Gaussian mixture mod-
els, which are individually refined with respect to the object to be classified.
In [14] we proposed in the MC-Tree a top down construction of the mixture
hierarchy that led to an improved anytime classification performance. However,
the employed decision process yields strong oscillations of the accuracy over
time in several domains, which contradicts the assumption that the performance
increases monotonically.

In this paper we propose BT* as an advanced algorithm for anytime classifica-
tion. We investigate three methods to improve the parameters in a given Bayes
tree and propose two alternative approaches for the decision design. The goals of
the research presented in this paper are: maintain the advantages of the Bayes
tree, including the applicability to large data sets (index structure) and the in-
dividual query dependent refinement, overcome the oscillating behavior of the
anytime accuracy and achieve a monotonically increasing accuracy over time,
and increase the accuracy of the classifier both for the ultimate decision and
for arbitrary time allowances. The BT* algorithm is one approach to Bayesian
anytime classification that we investigate in this paper and whose effectiveness
is clearly shown in the experiments. Other solutions can be investigated, such as
SPODEs (see Section 2) for categorical data, which are beyond the scope of this
paper. In the following section we review related work on anytime algorithms.
In Section 3 we provide details on the BT* algorithm, Section 4 contains the
experimental evaluation and Section 5 concludes the paper.

2 Related Work

Anytime algorithms have first been discussed in the AI community by Thomas
Dean and Mark Boddy in [4] and have thereafter been an active field of research.
Recent work includes an anytime A* algorithm [16] and anytime algorithms
for graph search [15]. In the data base community anytime measures for top-k
algorithms have been proposed [2], in data mining anytime algorithms have been
discussed for clustering [13] and other mining tasks.

Anytime classification is real time classification up to a point of interruption.
In addition to high classification accuracy as in traditional classifiers, anytime
classifiers have to make best use of the limited time available, and, most notably,
they have to be interruptible at any given point in time. This point in time is
usually not known in advance and may vary greatly. Anytime classification has
for example been discussed for support vector machines [5], nearest neighbor
classification [21], or Bayesian classification on categorical attributes [23]. Bayes
classifiers using kernel density estimation [11] constitute a statistical approach
that has been successfully used in numerous application domains. Especially for
huge data sets the estimation error using kernel densities is known to be very
low and even asymptotically optimal [3].

For Bayesian classification based on kernel densities an anytime algorithm
called Bayes tree has been proposed in [19]. The Bayes tree maintains a hier-
archy of mixture densities that are adaptively refined during query processing
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to allow for anytime density estimation. An improved construction methods has
been discussed in [14] that generates the hierarchy top down using expectation
maximization clustering. Our proposed BT* algorithm builds upon this work.

An important topic in learning from data streams is the handling of evolving
data distributions such as concept drift or novelty. A general approach to building
classifiers for evolving data streams has been proposed in [22]. The main idea is to
maintain a weighted ensemble of several classifiers that are build on consecutive
chunks of data and are then weighted by their performance on the most recent
test data. The approach is applicable to any classifier and can hence be combined
with our proposed method in case of concept drift and novelty.

A different line of research focuses on anytime learning of classifiers, e.g. for
Bayesian networks [17] or decision tree induction [6]. BT* allows for incremental
insertion and can thereby be interrupted at will during training. Our focus in
this paper is on varying time allowances during classification to allow processing
newly incoming data at varying rates.

3 BT*

We start by describing the structure and workings of the Bayes tree in the
following section. We recapitulate the top down build up strategy proposed in
[14] along with its performance. In Section 3.2 we develop three approaches to
improve the parameters in a given model hierarchy and Section 3.3 introduces
two alternative decision processes for anytime classification. Finally we evaluate
the proposed improvements in Section 4, individually as well as combined, to
find BT* as the best performing alternative.

3.1 Anytime Bayesian classification

Let L = {l1, . . . , l|L|} be a set of class labels, T a training set of labeled objects
and Tl ⊆ T the set of objects with label l. A classifier assigns a label l ∈ L to
an unseen object x based on its features and a set of parameter values Θ. The
decision function of a Bayes classifier is generally

fBayes(Θ, x) = argmax
l∈L

{P (l) · p(x|Θ, l)} (1)

where P (l) = |Tl|/|T | is the a priori probability of label l and p(x|Θ, l) is the class
conditional density for x given label l and Θ. The class conditional density can
for example be estimated using per class a unimodal distribution or a mixture
of distributions. The Bayes tree, referred to as BT in the following, maintains a
hierarchy of Gaussian mixture models for each label l ∈ L (see Figure 1).

Definition 1. The model M = {N1, . . . ,Nr} of a Bayes tree is a set of con-
nected nodes that build a hierarchy. Each node N = {e1, . . . , es} stores a set
of entries with 2 ≤ s ≤ maxFanout. An entry e = {pe, ne,LSe,SSe} stores a
pointer pe to the first node Ne of its subtree, the number ne of objects in the
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Fig. 1. The Bayes tree uses per class a hierarchy of entries that represent Gaussians
(top left). For classification, the class conditional density is computed using the entries
in the corresponding frontier (right). The initial frontier contains only the root entry;
in each refinement one frontier entry is replaced by its child entries (bottom left).

subtree and their linear and quadratic sums per dimension. The root node Nroot

stores exactly one entry elo for each label l ∈ L that summarizes all objects with
label l. Entries in leaf nodes correspond to d-dimensional Gaussian kernels.

We refer to the set of objects stored in the subtree corresponding to entry e as
T|e. Figure 1 illustrates the structure of a Bayes tree. Each entry e is associated
with a Gaussian distribution

g(x, μe, Σe) =
1

(2Π)d/2 · |Σe|
· e− 1

2 (x−μe)Σ
−1
e (x−μe)

T

(2)

where μe is the mean, Σe the covariance matrix and |Σe| its determinant. The
parameters of the Bayes tree are

Θ = {(μe, Σe) |∀e ∈
⋃r

i=1Ni } (3)

i.e. the set of parameters for all Gaussian distributions in the tree structure.
These can be easily computed from the information that is stored in the entries.
The mean values can be computed as

μe = LSe/ne (4)

Since the Bayes tree constitutes a naive Bayes approach, the covariance matrix
Σe = [σe,ij ] is a diagonal matrix with σe,ij = 0 ∀i�=j and

σii = SSe[i]/ne − (LSe[i]/ne)
2 (5)

where LSe[i] is the i-th component in LSe, i, j ∈ {1, . . . , d}.
To estimate the class conditional density p(x|Θ, l), the Bayes tree maintains at

each time t one mixture model for each label l. The mixture model is composed
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Fig. 2. MC-Tree [14] shows constantly best anytime accuracy performance against the
other Bayes tree classifier variant [19], the anytime nearest neighbor [21] and the Weka
classifier implementations of SVM and decision tree

of the most detailed entries that have been read up to that point in time such
that each training object is represented exactly once. This set of entries is called
a frontier Fl(t). Initially Fl(0) = {el0} (see Figure 1), i.e. the initial frontier
for label l contains only the root node entry {el0} corresponding to a unimodal
Gaussian distribution for that class. In each improvement step one frontier is
refined by

Fl(t+ 1) = Fl(t) \ {ê} ∪ Nê (6)

where ê = argmaxe′∈Fl(t){g(x, μe′ , σe′ )} is the entry in Fl(t) that yields the
highest density for x. To decide which frontier is refined in the next improvement,
the labels are sorted according to the posterior probability with respect to the
current query. In this order the top k = log(|L|) frontiers are consecutively
refined before resorting the labels. The decision rule of the Bayes tree at time t
is then

fBT (Θ, x, t) = argmax
l∈L

{
P (l) ·

∑

e∈Fl(t)

ne

nl
g(x, μe, σe)

}
(7)

where ne/nl is the fraction of objects from class l in the subtree corresponding
to entry e. Hence, the Bayes tree can provide a classification decision at any time
t and has an individual accuracy after each refinement.

The original Bayes tree builds separate hierarchies for each class label which
are created using the incremental insertion from the R-tree [9]. In [14] we in-
vestigated combining multiple classes within a single distribution and exploiting
the entropy information for the refinement decisions. While it turned out that
separating the classes remained advisable, the novel construction method EM-
TopDown proposed in [14] yielded constantly the best performance (see Fig. 2).

However, despite the improved anytime accuracy, the resulting anytime curves
exhibit strong oscillations on several domains (see Figures 2 or 9), which does not
constitute a robust performance. The oscillation results from alternating deci-
sions between the individual refinement steps. With our proposed BT* algorithm
we achieve near perfect results in terms of monotonicity and at the same time
successfully improve the anytime accuracy performance. In our experiments we
will use both the original incremental insertion (denoted as R) as well as the EM-
TopDown construction (denoted as EM) as baselines for comparison. We use the
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� operator to denote combinations of the baselines with different optimizations,
e.g. EM �BN (see below).

3.2 Parameter Optimization

The Bayes tree determines the parameters (μe, Σe) for the Gaussians correspond-
ing to the entries according to Equations 4 and 5. In this section we develop
both discriminative and generative approaches to optimize the parameters of
the Bayes tree. The first approach works on a single inner entry of the tree,
the second approach processes an entire mixture model per class, and the third
approach considers only leaf node entries.

BN. Our first strategy constitutes a generative approach. The goal is to fit
the Gaussian distribution of an entry e better to the data in its corresponding
subtree. So far the Bayes tree only considers variances and sets all covariances to
zero, i.e. Σ constitutes a diagonal matrix of a naive Bayesian approach. Hence,
the resulting distributions functions can only reflect axis-aligned spread of the
training data. The advantage is that the space demand with respect to the di-
mensionality d is O(d) compared to O(d2) for a full covariance matrix. Using
full covariance matrices would mean that O(d2) covariances have to be stored
for every single entry. Moreover, the time complexity for the evaluation of the
Gaussian density function (see Equation 2) increases from O(d) to O(d2). How-
ever, not all covariances might be useful or necessary. Small and insignificant
correlations and corresponding rotations of the Gaussians can be neglected.

Our goal is to add important correlations at low time and space complexity.
To this end we fix a maximal block size s and constrain Σ to have a block
structure, i.e.

Σ = diag(B1, . . . , Bu) (8)

where Bi ∈ R
si×si are quadratic matrices of block size si and si ≤ s ∀i = 1 . . . u.

The resulting space demand is in O(d · s). So is the time complexity, since the
exponent in the Gaussian distribution (see Equation 2) can be factorized as

zΣ−1zT =
∑u

i=1z[Li..Ui]B
−1
i z[Li..Ui]

T (9)

with z = (x − μ), Li = 1 +
∑i−1

j=1 sj, Ui = Li + si − 1 and z[Li..Ui] selects
dimensions Li to Ui from z.

To decide which covariances to consider and which to ignore we adapt a hill
climbing method for Bayesian network learning (as e.g. proposed in [12]) that
finds the most important correlations. We first describe how we derive a block
structured matrix from a Bayesian network and detail the learning algorithm
thereafter.

A Bayesian network B = 〈G,Θ〉 is characterized by a directed acyclic graph
G and a set of parameter values Θ. In our case G = (V,E) contains one vertex
for the class label and one vertex i ∈ V for each attribute. The class vertex is
connected to every attribute vertex. An edge (i, j) ∈ E between attribute i and
j induces a dependency between the corresponding dimensions. We derive an
undirected graph G′ from G by simply removing the orientation of the edges.
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Fig. 3. An example for deriving a block structured covariance matrix (right) from a
Bayesian network (left) performed on each inner entry

Edges (i, j) ∈ E′ between two attributes i and j are then transferred to a co-
variance σij and its symmetric counter part σji in Σ (see Figure 3). Since there
are no constraints on the dependencies in the Bayesian network, the resulting
matrix is unlikely to contain non-zero entries only in blocks along the diagonal.
To ensure a block structure, we apply a permutation P to Σ by PΣP−1 that
groups dimensions, which are connected in G′, as blocks along the diagonal. In
the resulting blocks, covariances that have not been set before are added, since
these harm neither the space nor the time complexity. During classification, P is
then also applied to z before computing Equation 9. Since P is just a reordering
of the dimensions, it can be stored in an array of size d and its application to z
is in O(1) per feature.

To create the block covariance matrix for an entry e we start with a naive
Bayes, i.e. initially (i, j) /∈ E′ ∀i, j and Σe = diag(σe,11, . . . , σe,dd). From the
edges that can be added to G′ without violating the maximal block constraint
in the resulting block matrix, we iteratively select the one that maximizes the
likelihood of e given T|e. Since all objects x ∈ T|e have the same label l, the log
likelihood is

LL(e|T|e) =
∑

x∈T|e log (p(l, x|(μe, Σe))) (10)

We stop when either the resulting matrix does not allow for further additions or
no additional edge improves Equation 10.

In general, we determine a block covariance matrix for each entry in the Bayes
tree. However, on lower levels of the Bayes tree the combination of single com-
ponents is likely to capture already the main directions of the data distribution.
This might render the additional degrees of freedom given by the covariances
useless or even harmful, since they can lead to overfitting. We therefore evaluate
in Section 4 in addition to s the influence of restricting the BN optimization to
the upper m levels of the Bayes tree.

MM. In the previously described approach we fitted a single Gaussians to the
underlying training data using a generative approach. The approach we propose
next considers an entire mixture model per class and tries to optimize the mix-
ture parameters simultaneously in a discriminative way. To this and we adapt
an approach for margin maximization that has been proposed in [18] (referred
to as MM). It seeks to improve the classification performance of Bayesian clas-
sifiers based on Gaussian mixtures and is therefore a good starting point for the
hierarchical mixtures in the Bayes tree. In the following we first describe how
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we derive the mixture models per class from the tree structure and then explain
the optimization procedure.

We need a heuristic to extract one mixture for each label l ∈ L from the Bayes
tree. The mixture models are described by a set of entries E ⊂

⋃
Ni∈M Ni and

we define

Θ(E) =
⋃

e∈E
{μe, Σe} (11)

as the corresponding set of parameter values. Initially we set E0 = Nroot, i.e. for
each label l ∈ L the unimodal model describing Tl is represented by Θ(E0). After
optimizing the parameters in Θ(E0) we update the corresponding parameters in
the Bayes tree (see Figure 4). In subsequent steps we descend the Bayes tree and
set

Ei+1 =
⋃

e∈Ei

{
Ne if pe �= null

{e} otherwise.
(12)

As above, the sets Ei are optimized and the Bayes tree parameters are updated.
Similar to the previously described BN approach we test as an additional pa-
rameter the maximal number m of steps taken in Equation 12 in our evaluation
in Section 4. For example, for m = 2 we only optimize the upper two levels of
the Bayes tree.

We explain the MM approach for a given set of entries E representing one
mixture model for each label l ∈ L. Let Θ = Θ(E) be the corresponding set of
parameter values and lx ∈ L the label of an object x. The goal is to find parame-
ters such that for each object x ∈ T the class conditional density p(lx, x|Θ) of its
own class is larger than the maximal class conditional density among the other
labels. The ratio between the two is denoted as the multi class margin dΘ(x):

dΘ(x) =
p(lx, x|Θ)

maxl �=lx p(l, x|Θ)
(13)

If dΘ(x) > 1 the object is correctly classified. The optimization then strives to
maximize the following global objective

D(T |Θ) =
∏

x∈T
h̄((dΘ(x))

λ) (14)

where the hinge function h̄(y) = min{2, y} puts emphasis on samples with a
margin dΘ(x) < 2, and samples with a large positive margin have no impact
on the optimization. The optimization steps require the global objective to be
differentiable. To this end the multi class margin dΘ(x) is approximated by

dΘ(x) ≈
p(lx, x|Θ)

[∑
l �=lx

p(l, x|Θ)κ
]1/κ (15)
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Fig. 4. Left: adding selected covariances individually to inner entries. Center: discrim-
inative parameter optimization for entire mixture models using the margin maximiza-
tion concept (MM). Right: changing the bandwidth parameter for leaf entries.

using κ ≥ 1. In the global objective the hinge function is approximated
by a smooth hinge function h(y) that allows to compute the derivative
∂ logD(T |Θ)/∂Θ:

h(y) =

⎧
⎪⎨

⎪⎩

y + 1
2 if y ≤ 1

2− 1
2 (y − 2)2 if 1 < y < 2

2 if y ≥ 2

(16)

The derivatives with respect to the single model parameters θi ∈ Θ are then
used in an extended Baum-Welch algorithm [8] to iteratively adjust the weights,
means and variances of the Gaussians. Details for the single derivations as well
as the implementation of the extended Baum Welch can be found in [18].

BW. In its leaves the Bayes tree stores d-dimensional Gaussian kernels (see
Definition 1). The kernel bandwidth hi, i = 1 . . . d, is a parameter that is chosen
per dimension and that can be optimized by different methods for bandwidth
estimation. A method discussed in [20,10] uses

hi =
d+4

√
4

(d+ 2) · |T | · σ̂i (17)

where σ̂i is the variance of the training data T in dimension i. A second method
[11] determines the bandwidth as

hi =
maxi −mini√

|T |
(18)

where maxi and mini are the maximal and minimal values occuring in T in
dimension i. Additionally we test a family of bandwidths

hi = α · σ̂i (19)

in Section 4, where a factor α is multiplied to σ̂i. We refer to the three methods
in Equations 17, 18 and 19 as haerdle, langley and fα respectively.
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3.3 Decision Design

In the previous section we discussed different approaches to optimize distribution
parameters in a given Bayes Tree. In this section we investigate alternatives
for making decisions over time given an optimized tree structure. The original
decision function for the Bayes tree is given in Equation 7. To estimate the
class conditional density for a class l at time t the entries that are stored in the
current frontier Fl(t) are evaluated and summed up according to their weight.
We propose two approaches that both change the set of entries that are taken
into consideration for the classification decision.

ENS. The first approach constitutes a special kind of ensemble methods. En-
sembles are frequently used both for a single paradigm, as e.g. in Random Forests
where multiple decision trees are created and employed, or for several different
paradigms. The basic concept of ensembles is simple and can easily be transferred
to any classification method. A straightforward way for the Bayes tree would be
to build several tree structures, e.g. using different samples of the training data,
and combine the individual outcomes to achieve a classification decision. The
method we propose here uses a single Bayes tree and builds an ensemble over
time.

In the Bayes tree so far only the most recent frontiers Fl(t) were used in
the decision function. To create an ensemble over time using the Bayes tree, we
combine all previous frontiers in the modified decision function

fBT�ENS(Θ, x, t) = argmax
l∈L

{
P (l) ·

t∑

s=0

∑

e∈Fl(t−s)

ne

nl
g(x, μe, σe)

}
(20)

The additional computational cost when using the ensemble decision from Equa-
tion 20 compared to the original decision from Equation 7 is only a single op-
eration per class. More precisely, we just have to add the most recent density,
which we compute also in the original Bayes tree, to an aggregate of the pre-
vious densities. Since we sum up the same amount of frontiers for each label,
we can skip the normalization without changing the decision and do not have
to account for additional operations. The ensemble approach widens the basis
on which we make our decision in the sense that it takes mixture densities of
different granularities into account for the classification decision. The approach
we propose next takes the opposite direction in the sense that it narrows the set
of Gaussian components that are used in the decision process.

NN. The NN approach is inspired by the nearest neighbor classifier. The nearest
neighbor classifier finds a decision based on the object that is the closest to
the query object x, i.e. it selects only the most promising object from T . This
concept can be transferred to the Bayes tree in a straightforward way by using
the modified decision function

fBT�NN (Θ, x, t) = argmax
l∈L

{
P (l) · max

e∈Fl(t)

{ne

nl
g(x, μe, σe)

}}
(21)
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segment 2310 19 7 gender 189961 9 2
kr-vs-kp 3196 36 2 covtype 581012 10 7

Fig. 5. Left: Illustration of the monotonicity measure. The larger the area resulting
from decreasing accuracy over time, the worse the monotonicity performance. Right:
Data sets used for evaluation and their corresponding number of objects (#obj), di-
mensions (d), and classes (|L|).

The NN approach comes at no additional cost since we replace the addition by
a comparison in Equation 21. Variants of the nearest neighbor classifier use k
closest objects. The actual label can then be assigned based on a simple majority
voting among the neighbors or taking their distance or the prior probability of
the labels into account. We test the standard nearest neighbor concept with
k = 1 for fBT�NN in our experiments.

4 Experiments

We evaluate our improvements over both [19] (called R) and [14] (called EM).
Comparisons of the Bayes tree to anytime nearest neighbor, decision tree and
SVM can be found in [14] (see Section 3.1 and Figure 2).

In classifier evaluation mostly the accuracy acc or the error rate, i.e. 1−acc, is
used as a measure. Since the Bayes tree is an anytime classifier that incrementally
refines its decision, we get an individual accuracy acc(n) for each number n of
refinements (see for example Figure 7 right). In all experiments we report the
results for the first r = 200 refinements. To compare the different approaches
we use the average accuracy avg as well as the maximal accuracy max over
all refinements. As a third objective, which penalizes descending or oscillating
anytime curves, we use the monotonicity

mon = 1− 1

r

r∑

n=1

âcc(n)−min{âcc(n), acc(n)}

where âcc(n) = max1≤n′<n acc(n
′) is the maximal accuracy over all n′ < n.

Figure 5 illustrates the monotonicity measure. The larger the sum of all areas
resulting from decreasing anytime accuracy, the worse the monotonicity.

When choosing best results we select according to a linear combination of all
three measures with equal weights. For the Bayes tree we set maxFanout = 7
and use the bandwidth estimation from [11] (langley) for the baselines. All exper-
iments use 10-fold cross validation. For all objects in the test set we evaluate the
classification decision after each improvement and report the average accuracy
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avg max mon avg max mon avg max mon avg max mon avg max mon avg max mon

page blocks 1.5% 1.1% 5.2% 0.6% 0.3% 9.8% 0.2% 0.3% 18.0% 0.1% 0.2% 8.9% 0.9% 0.5% 1.1% 0.5% 0.4% 4.7%

optdigits 0.7% 0.8% 2.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.3% 8.3% 0.6% 0.3% 0.2%

letter 7.3% 9.5% 2.9% 5.5% 4.7% 3.7% 3.6% 4.0% 1.7% 1.5% 1.5% 1.1% 1.3% 0.1% 0.4% 1.5% 0.6% 1.3%

segment 3.9% 2.1% 24.8% 6.2% 3.1% 23.5% 0.0% 0.3% 10.8% 0.1% 0.1% 6.4% 5.8% 2.6% 23.9% 1.3% 0.7% 20.2%

kr vs kp 0.0% 0.0% 0.0% 1.1% 0.5% 1.4% 0.0% 0.0% 0.5% 0.0% 0.0% 0.1% 0.5% 1.1% 2.3% 18.7% 13.1% 17.4%

pendigits 2.7% 2.9% 11.4% 1.1% 0.8% 3.0% 1.8% 2.0% 3.4% 0.2% 0.1% 2.5% 0.0% 0.3% 3.3% 0.6% 0.5% 1.1%

vowel 6.0% 4.1% 8.0% 4.9% 3.8% 6.4% 0.2% 0.9% 5.1% 0.3% 0.1% 1.9% 0.8% 1.1% 4.7% 1.8% 1.5% 4.4%

spambase 0.8% 0.3% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.1% 7.1% 5.1% 0.2% 6.3% 3.1% 1.9%

gender 2.6% 3.9% 1.2% 3.5% 3.9% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 1.1% 1.3% 5.9% 4.7% 3.3% 0.7%

covtype 3.4% 5.6% 3.0% 14.3% 12.3% 5.4% 2.4% 2.4% 2.3% 0.3% 0.3% 1.7%

averages 2.9% 3.0% 6.0% 3.7% 2.9% 5.1% 0.3% 0.5% 1.5% 0.2% 0.1% 0.7% 1.8% 1.0% 4.8% 4.0% 2.6% 1.5%

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Bandwidth Estimation (BT BW) Bayesian Network (BT BN) MaxMargin (BT MM)

Fig. 6. Approaches for parameter optimization.

over all folds per improvement. The employed data sets and their characteristics
are listed in Figure 5 (right). They are available at [7] (and [1] for gender) where
further details and background information can be found. We summarize the
results and our findings in Section 4.5.

4.1 Parameter Optimization

Figure 6 shows the improvements in all three measures for the three proposed
parameter optimization approaches. The numbers are absolute differences to the
corresponding baseline method, highlighted cells indicate improved performance.
The additional row contains the average values over all domains. We report the
actual values of the measures for the baselines and the final BT* in Figure 9
below. In Figure 7 (right) we show the resulting anytime accuracy plots for the
single approaches using the letter data set as an example.

The results shown for the bandwidth estimation in Figure 6 are the best
results over the three heuristics from Equations 17 to 19, where we tested for
the latter α ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. In the 20 results (EM and R
on 10 data sets) haerdle and langley were both chosen three times, twice f0.01
was the best choice, and the remaining results were achieved by f0.05. By the
optimized bandwidth estimation all accuracy values, i.e. avg and max on both
R and EM , could be improved with the exception of max for EM on page-
blocks and max for R on spambase. The largest improvement is achieved for the
monotonicity with the single exception of EM on kr-vs-kp. The anytime plot in
Figure 7 illustrates the good performance of BT �BW in all three measures.

The performance of using block covariance matrices in the BT �BN approach
is hardly better than any of the two baselines. As above, the results shown in
Figure 6 are the best among all parameter settings for BT � BN , i.e. over all
block sizes s and numbers of levelsm (see Section 3.2). The largest improvements
are achieved on the letter data set with s = d and m = 1. The performance gain
was less for smaller block sizes (results not shown). As mentioned in Section 3.2,
the additional degrees of freedom gained through the covariances seem to be
useless or even harmful on lower levels of the tree: the displayed results, which



310 P. Kranen, M. Hassani, and T. Seidl

1%

1%

3%

5%

7%

9%

MaxMargin improvements on static mixture models

7 components 49 components

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

ac
cu
ra
cy

refinements

BT*
R BW
R BN
R ENS
R NN
R Baseline
R MM

Fig. 7. Left: Results for MM on static mixture models of size 7 and 49. Right: Effects
of single approaches on letter.

are the best among all m and s, all use m = 1 and s = d. Nonetheless, as stated
above, the performance gain is only marginal on 9 of 10 data sets.

The margin maximization approach BT �MM does not add covariances but
only seeks to improve the weights, means and variances of the Gaussians in the
Bayes tree. The results on the 10 tested data sets are shown in Figure 6 (The
results for covtype could not be achieved with 4GB RAM). As above we show the
best results over all parameter settings where κ ∈ {1..10}, λ ∈ [0, 10] and m from
1 to the maximal tree height. On average BT �MM improves the monotonicity
over the baselines, but neither of the accuracy measures. The detailed results
show slight improvements over the R baseline on three data sets. This result
is surprising at first sight, since the original concept from [18] is designed for
improving Gaussian mixture models. We discuss possible reasons below.

To exclude the possibility that the poor performance of BT �MM is solely
due to the data set characteristics, we tested our implementation of MM on
static Gaussian mixture models. Using the same expectation maximization clus-
tering that we use for constructing the Bayes tree in the EM baseline, we created
for each data set two mixtures, each contains one model per class. In the first
mixture each model has 7 components, in the second 49 components per class
were used. We chose multiples of 7 since it corresponds to the chosen fanout of
the Bayes tree. We report the resulting absolute gain in classification accuracy
from the optimized over the initial mixtures in Figure 7. MM improves the ac-
curacy for at least one mixture on 8 data sets and for both mixtures on 5 of 10
data sets in our experiments. For the vowel data set the improvement is 3% for
the 49 components and nearly 8% for the 7 components. However, neither avg
nor max are improved by BT �MM on vowel (see Figure 6). One reason for this
is the fact that BT �MM optimizes the mixtures in the Bayes tree level by level,
but the decision fBT uses arbitrary mixtures that can contain components from
many different levels of the tree. These components, or rather these mixtures,
were never optimized together. Optimizing all possible mixtures is not feasible,
since on the one hand the sheer number of possible mixtures makes the opti-
mization computationally infeasible, and on the other hand such an approach
does not yield a single set of parameters values per Gaussian.
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avg max mon avg max mon avg max mon avg max mon

page blocks 1.2% 0.4% 10.7% 0.8% 0.2% 9.7% 0.7% 0.5% 3.8% 46.3% 0.8% 47.2%

optdigits 1.1% 2.0% 11.4% 3.2% 3.5% 1.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

letter 1.7% 0.7% 3.1% 1.6% 0.0% 3.8% 0.1% 0.2% 0.3% 0.2% 0.3% 1.5%

segment 5.9% 1.5% 37.7% 4.2% 0.5% 24.3% 0.0% 0.0% 0.1% 4.4% 2.4% 18.6%

kr vs kp 1.7% 3.4% 2.0% 2.7% 1.6% 0.7% 0.1% 0.1% 1.1% 0.1% 0.1% 0.2%

pendigits 2.0% 1.1% 12.5% 0.3% 0.1% 3.1% 0.1% 0.0% 0.8% 0.6% 0.3% 2.7%

vowel 2.4% 0.7% 8.1% 2.8% 1.1% 4.8% 4.9% 4.0% 7.4% 3.6% 3.9% 5.4%

spambase 2.1% 0.2% 12.9% 4.0% 5.7% 3.8% 0.0% 0.0% 0.0% 0.2% 0.2% 0.6%

gender 0.4% 1.5% 1.3% 2.3% 1.7% 1.4% 2.1% 1.7% 4.4% 3.4% 0.8% 17.3%

covtype 2.3% 3.4% 3.0% 6.2% 1.8% 5.4% 0.5% 0.1% 3.2% 11.9% 6.9% 37.9%

averages 1.5% 0.4% 10.3% 0.8% 0.6% 5.1% 0.3% 0.3% 0.3% 5.3% 0.2% 7.5%

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Ensemble (BT ENS) Nearest Neighbor (BT NN)

Fig. 8. Decision design approaches

4.2 Decision Design

For the decision design we tested fBT�ENS and fBT�NN and show the absolute
improvements for the three objectives in Figure 8. The ensemble over time in the
Bayes tree (see Equation 20) yields on average a slight increase in the accuracy
measures avg and max for the R baseline and is rather neutral on the EM
baseline. The monotonicity, however, is drastically increased by BT � ENS,
on average by more than 10% compared to the R baseline and more than 5%
compared to the EM baseline. This is underlined by the anytime accuracy plot
of BT � ENS in Figure 7 which shows a smooth and monotonically increasing
behaviour.

In contrast, the results of BT � NN hardly show any improvement over the
R baseline except for vowel. The anytime plot for BT � NN is hardly visible
in Figure 7, since it coincides with the curve of the R baseline. This is another
surprising result: it indicates that taking per label only the one single Gaussian,
which yields the highest class conditional density for the query object, results in
almost exactly the same decisions as taking the entire mixture models. As can
be seen in Figure 8, this strongly holds for 7 of the 10 tested data sets on the R
baseline. Compared to the EM baseline the performance of BT �NN is worse on
average. Summarizing the evaluation of the single approaches we can conclude
thatBW , ENS andBN successfully improve the anytime accuracy (see Figure 7
(right)). The first two additionally drastically improve the monotonicity on all
domains.

4.3 Combining Approaches

Next we study the cumulative performance gain when improving BT by more
than one concept. Figure 9 shows the anytime accuracy plots on letter for the
EM baseline and the combined versions using ENS and/or BN and/or BW .
The curve of the EM baseline exhibits a strong oscillation. EM �BN improves
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avg max mon avg max mon avg max mon

page blocks 94.0% 95.9% 87.0% 95.4% 96.8% 87.3% 96.6% 96.9% 98.2%

optdigits 92.9% 94.6% 87.9% 97.2% 97.8% 98.8% 96.8% 97.0% 100.0%

letter 76.1% 78.8% 96.8% 87.9% 90.5% 96.1% 93.5% 95.3% 99.9%

segment 86.3% 92.0% 59.3% 89.4% 93.6% 72.6% 94.4% 95.1% 96.4%

kr vs kp 84.4% 90.1% 96.1% 93.9% 95.2% 99.0% 93.9% 94.6% 99.3%

pendigits 93.1% 94.6% 87.3% 97.9% 98.7% 96.6% 99.0% 99.4% 99.7%

vowel 91.0% 94.4% 90.8% 90.8% 94.4% 92.5% 97.4% 98.7% 99.6%

spambase 87.4% 91.5% 81.4% 88.5% 91.4% 85.7% 91.9% 92.5% 98.5%

gender 73.1% 73.9% 98.4% 80.5% 81.8% 98.5% 84.3% 85.7% 99.9%

covtype 62.4% 63.1% 96.0% 71.4% 77.2% 94.4% 79.8% 82.7% 99.8%

averages 84.1% 86.9% 88.1% 89.3% 91.7% 92.2% 92.8% 93.8% 99.1%

R baseline EM baseline BT*

Fig. 9. Left: Anytime plots for combined approaches. Right: Baseline results for R and
EM and the results for the proposed BT*.

the accuracy throughout on this data set, but cannot diminish the oscillation.
Near perfect monotonicity is reached when using ENS, either alone (EM�ENS)
or additionally (EM �BN �ENS). The cumulation of the two positive effects, i.e.
increased accuracy and monotonicity, is clearly expressed by the corresponding
anytime plots. EM � BW pushes up the accuracy and can also improve the
monotonicity. Adding ENS yields again near perfect monotonicity (see EM �
BW � ENS). Finally, combining the three concepts with EM yields the best
results on this domain.

To find the globally best results we allowed all combinations of the proposed
improvements and selected per data set the best setting with respect to the linear
combination of all three measures. In the resulting settings ENS was used on
all data sets and f0.05 was used eight times for BW , while other parameter
optimizations were rarely employed (once BN and twice MM).

For the final setting that is used on all data sets we chose BT* = EM �
f0.05 � ENS. The results are shown in Figure 9 (right) along with the two
baselines R and EM . The values shown are the absolute values for the measures.
Highlighted cells indicate an improvement over both baselines. On all data sets
all three measures are improved by the BT* except for avg and max on optdigits
and max on kr-vs-kp, where it shows slightly worse performance compared to
EM . Overall, improving BT to BT* yields very good results on all tested data
sets. Figure 10 (left) shows the anytime accuracy plots for BT* which illustrate
the great performance with respect to all three measures. Figure 10 visually
summarizes the average results of the single concepts and BT*, underlining the
superior performance of BT*.

4.4 Scalability

To investigate the scalability of the BT* classifier we have to consider both large
training data sets and large test data sets. The former affect the construction
time and the storage of the data structure. For the latter, the classification time
is of interest. Before we discuss these issues, we introduce three final results
that are important for both training and testing. The anytime accuracy plots in
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Fig. 10. Top: Anytime accuracy results for BT ∗. Bottom: Average absolute differences
over all 10 data sets for single and combined approaches.

Figures 7, 9 and 10 show the accuracy values for the first 200 refinements. If even
more refinements are performed, the classification decision barely changes, since
the density estimates change only marginally with remote mixture components
being refined. Figure 11 shows for three data sets the accuracy performance for
all possible refinements.

As described in the previous section, BT* uses the EMTopDown construction.
For very large training data sets the complexity of the EM clustering algorithm
can yield high training times. However, if the data is collected over time, BT* can
be trained using the EMTopDown strategy on an initial data base and new
training data can be incrementally learned in addition. This strategy can also be
applied for large training data sets that are readily available. Another option in
this scenario is to sample the data base and perform the EM construction on the
sample. The results from Figures 10 and 11 suggest that accurate classification
decisions can be achieved based on relatively small parts of the training data.
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Fig. 11. Computing all possible refinements for vowel, pendigits, and letter
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If the size of the resulting data structure exceeds the main memory, it can be
stored and accessed from secondary storage. One page hosts in this scenario one
node of the tree structure (as in common index structures), experiments for page
accesses and different page sizes can be found in [19].

During classification, the time that is needed for a single refinement depends
on the dimensionality d and on the number of previous refinements r. For every
entry in the newly read node a Gaussian has to be evaluated, which is in O(d).
After that the entry has to be sorted into the frontier, which can be done in
O(log22(r ·maxFanout)) using a heap (after r refinements the frontier contains
maximally r · maxFanout entries). The actual times for gender and pendigits
shown in Figure 2 correspond to 64 and 82μs per refinement, respectively. From
the results shown in Figures 10 and 11 we can derive that a rather small number
of refinement (around 200) most often suffices to achieve a classification accuracy
that is comparable to the ultimate performance. Hence, the classification time
for a single object is very low even for large training data sets, which renders
the BT* algorithm well suited for applications with very large test data sets.

4.5 Summary

We investigated three approaches for parameter optimization and two novel meth-
ods for the decision design. The margin maximization conceptMM and the near-
est neighbor like decision method NN both yielded only marginal improvements,
if any. Adding covariances using the Bayesian network approachBN improved the
performance only on very few domains and left it unchanged in most other cases.
Two approaches that together significantly improved both accuracy and mono-
tonicity are the bandwidth estimation BW and the ensemble over time ENS.
Therefore we evaluated in Section 4.3 BT* = EM � f0.05 � ENS (see Figure
10) that we suggest as the final variant of our anytime Bayesian classifier.

5 Conclusion

Applications for stream classification are numerous and anytime classifiers are
well suited for this task since they flexibly use all available time and can pro-
vide a result after any time. Two important properties of an anytime classifier
are high accuracies regardless of the available time and monotonic increase of
the accuracy with additional time allowance. In this paper we have significantly
improved both the monotonicity and the anytime accuracy of a recent anytime
classifier. The proposed BT* algorithm achieved near perfect results on all tested
data sets. It uses a special kind of ensemble that combines mixtures of different
granularities resulting from the same classifier over time. The improved perfor-
mance is achieved without sacrificing the time complexity, which is the same as
in previous approaches. In summary, the BT* algorithm constitutes an efficient
and consistent solution for anytime classification.
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