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Abstract Clustering streaming data requires algorithms that are capable of updating
clustering results for the incoming data. As data is constantly arriving, time for process-
ing is limited. Clustering has to be performed in a single pass over the incoming data and
within the possibly varying inter-arrival times of the stream. Likewise, memory is limited,
making it impossible to store all data. For clustering, we are faced with the challenge of
maintaining a current result that can be presented to the user at any given time. In this work,
we propose a parameter-free algorithm that automatically adapts to the speed of the data
stream. It makes best use of the time available under the current constraints to provide a clus-
tering of the objects seen up to that point. Our approach incorporates the age of the objects
to reflect the greater importance of more recent data. For efficient and effective handling, we
introduce the ClusTree, a compact and self-adaptive index structure for maintaining stream
summaries. Additionally we present solutions to handle very fast streams through aggrega-
tion mechanisms and propose novel descent strategies that improve the clustering result on
slower streams as long as time permits. Our experiments show that our approach is capable
of handling a multitude of different stream characteristics for accurate and scalable anytime
stream clustering.
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1 Introduction

Analysis of streaming data is gaining importance as sensors or other data gathering devices
are widely deployed. Streams constitute data values or tuples that need to be processed as
they arrive. With the wide applicability of streaming data, clustering of streaming data has
recently received much attention in data mining research. The goal is to cluster the objects
within the stream continuously, such that there is always an up-to-date clustering of all objects
seen so far. As opposed to clustering of a fixed data set that is available entirely prior to the
data mining analysis, clustering of streaming data poses additional challenges.

Single pass clustering. In streaming environments, data arrives continuously. This means
that clustering streams has to be performed in a single pass over the data in an online fashion.

Limited memory. Since data streams are assumed to be endless, storing each arriving object
is simply not feasible. Any streaming clustering model has to adhere to memory constraints.

Limited time. The algorithm has to be able to keep up with the speed of the data stream.
Clustering of the data cannot take longer than the average time between any two objects in
the stream. Clustering has to keep up with the stream to always maintain a current clustering
model.

Varying time allowances. Many streams do not show a constant flow of data, but constitute
bursty streams. This means that the time available to process any item in the stream may
vary greatly. Examples include peak times for customer transactions or seasonal changes in
consumer behavior. Existing stream clustering algorithms are not capable of handling such
varying time allowances, unless they were to resort to the minimal time allowance in the
stream. Clearly, this means downgrading to the worst case assumption.

Evolving data. It is important to take into account that the model underlying the data in the
stream may change over time. For example, consumption patterns during holidays may differ
from those that are seen the rest of the year. To capture such phenomena, stream clustering
should be capable of clearly identifying such changes. Denoted as concept drift, changes in
clusters should be reported separately. Likewise, newly created clusters, so-called novelty,
and outliers should be detected as such.

Flexible number and size of clusters. Many clustering algorithms, e.g. from the family
of partitioning algorithms, require parametrization of the number of clusters to be detected.
While setting such a parameter is also difficult in traditional clustering, streams undergo
changes that may cause clusters to emerge, disappear, merge, or split. As such, setting a
fixed number of clusters for the stream would distort the model. Existing stream clustering
algorithms have to fix the size of their model in advance, e.g. through a maximum number
of micro clusters [2], even though such knowledge is usually not available apriori.

In brief, clustering streams cannot be done using traditional algorithms for batch process-
ing of data sets. Intuitively, it is not possible to stop the stream to perform analysis, or to
indefinitely postpone display of results (e.g. analysis results on a dynamic website) in order
to have the time to perform offline clustering. So, the naive solutions would be (i) to try
and buffer the stream for later processing, which is not possible for endless streams of data,
(ii) to drop random data in order to keep up with the stream speed, which means that valuable
data is lost forever, or (iii) to settle for the worst case (the fastest imaginable stream speed),
which means that only poor clustering results are obtainable and that the algorithm is idle
most of the time. These naive solutions clearly do not make best use of the time available
and of the information that the stream contains.
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We propose a parameter-free stream clustering algorithm ClusTree that is capable of
processing the stream in a single pass, with limited memory usage. It always maintains
an up-to-date cluster model and reports concept drift, novelty, and outliers. Moreover, our
approach makes no apriori assumption on the size of the clustering model, but dynamically
self-adapts. For handling of varying time allowances, we propose an anytime clustering
approach. Anytime algorithms are capable of delivering a result at any given point in time,
and of using more time if it is available to refine the result. For clustering, this means that
our algorithm is capable of processing even very fast streams, but also of using greater time
allowances to refine the clustering model. Thus, our anytime clustering ClusTree overcomes
the issues with traditional batch processing. We show that our algorithm can be combined
with existing techniques for aging objects in the stream using decay functions, reporting
cluster snapshots at different points in time, and comparing views at different points in time
[2,3,25]. To the best of our knowledge, our approach is the first anytime clustering algorithm
for streams.

2 Related work

There is a rich body of literature on stream data mining. Approaches for frequent itemset
mining [10,11,21] and classification [1,15] have been proposed. Recently, clustering of data
streams has been studied under different clustering paradigms. Convex stream clustering
approaches are based on a k-center clustering. [23] processes the data stream in chunks and
clusters each chunk into k clusters using either k-means or LSEARCH, a k-median variant.
The final clustering is then generated by clustering the stored results from the chunks. If the
available space is exceeded, the individual results from each chunk are merged via clustering
to allow reusing the space for new chunks. [26] uses k-means clustering and additionally
maintains a list of objects that do not fit the current clustering w.r.t. a “global boundary”
[26]. A reclustering is started once that list becomes too large. [2] maintains a fixed number
of micro-clusters and assigns a new object to the closest micro-cluster if it falls within its
“maximum boundary” [2]. If no match can be found, either the most outdated cluster is
deleted or the closest two clusters are merged. The final clustering is computed in an offline
component using a k-center clustering on the micro-clusters. [3] does not explicitly fix the
number of maintained clusters, but uses a fixed total number of dimensions, i.e., the clusters
are maintained only in their most significant dimensions. As in [2], a new object is checked
against each maintained cluster and eventually new clusters are created and the least recently
updated cluster is deleted.

Micro-clusters (also called clustering features) have been introduced earlier for non-
streaming contexts for speeding up clustering in large databases. In [34], a hierarchical
index is maintained for faster access. For multidimensional streams, mapping to a frequent
itemset representation is proposed in [5]. These approaches do not study streams nor do they
provide anytime capabilities.

Detecting clusters of arbitrary shape in streaming data has been proposed using kernels
[18], graphs [22], fractal dimensions [6] and density-based clustering [8,9]. [8] maintains a
number of micro-clusters in an online component and applies a common density- based clus-
tering on these micro-clusters in an offline component. [9] and [6] both follow a grid-based
approach and store the density for populated grid cells in an online component. [9] finds
clusters of arbitrary shape by combining neighboring cells with a density-based approach,
while [6] uses the fractal dimension of a cluster to determine the cells that belong to it. In
Sect. 3.5, we discuss how our technique can be flexibly combined with these approaches.
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None of the above approaches allows for anytime clustering nor for adapting the cluster-
ing model to the stream speed in an online fashion. Anytime algorithms denote approaches
that are capable of delivering a result at any given point in time, and of using more time if
it is available to refine the result. Anytime data mining algorithms such as top k process-
ing [4], anytime learning [27,32] and anytime classification [12,19,20,24,29,33] are a very
active field of research. An anytime clustering approach for time series has been proposed in
[31], which is not directly targeted at streaming data. Our approach thus constitutes the first
anytime stream clustering algorithm.

Finally, different approaches have been proposed to present an up-to-date view on the
clustering result or to determine and visualize concept drift and novelty in stream clustering.
[30] focuses on detecting a change in the underlying stream by means of the minimal descrip-
tion length. The pyramidal time frame proposed in [2] enables the view on clusterings of
arbitrary time horizons defined by the user. [25] categorizes cluster transitions into internal
and external transitions and describes how to detect these. [3,18,28] employ an exponen-
tial decay function to weigh down the influence of older data, thus focusing on keeping an
up-to-date view of the data distribution. Tracking of clusters in data streams is discussed in
[35]. We show the compatibility of our approach to the methods from [2,3,25] in Sect. 3.5.

3 Self-adaptive anytime stream clustering

We propose self-adaptive anytime stream clustering that relies on an index structure for stor-
ing and maintaining a compact view of the current clustering. The size of our clustering model
automatically adapts to the stream speed, which cannot be achieved by any buffering outside
the storage structure. Moreover, we do not want to drop any data object, but want to preserve
a complete model. Hence, any object from the stream is inserted into the index and possibly
merged with aggregates of previously inserted objects. We describe strategies for dealing
with varying time constraints for anytime clustering, i.e., the possibility of interrupting the
process at any given point in time.

The structure of the main part is as follows. In Sect. 3.1, we define the data structure of
the ClusTree and describe how we realize the anytime insertion. In Sect. 3.2, we explain how
aging of older objects is incorporated into our anytime algorithm and provide a proof for the
ClusTree invariant. Dealing with exceptionally fast streams and making best use of additional
time on slower streams is described in Sections 3.3 and 3.4, respectively. Section 3.5 details
how different cluster shapes and cluster transitions, e.g. novelty or drift, can be handled using
the ClusTree. Finally, we summarize the solutions and benefits as well as an overview of the
ClusTree algorithm in Sect. 3.6.

3.1 The ClusTree—Micro-clusters and anytime insert

Our approach is based on micro-clusters as compact representations of the data distri-
bution. By maintaining measures for incremental computation of mean and variance of
micro-clusters, the infeasible access to all past stream objects is no longer necessary.

Micro-clusters are a popular technique in stream clustering or scaling clustering to large
data sets [2,3,34] to create and maintain compact representations of the current cluster-
ing. Instead of storing all incoming objects, a cluster feature tuple C F = (n, L S, SS) of
the number n of represented objects, their linear sum L S, and their squared sum SS is
maintained. This tuple suffices for computing mean and variance and can be incremen-
tally updated. Any cluster feature (CF) then represents a micro-cluster, i.e., a set of objects
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and the main characteristics of its distribution. With this, objects can be easily assigned to
the most similar micro-cluster incrementally. Existing micro-cluster approaches lack sup-
port for varying stream inter-arrival times. It is therefore crucial to provide the means
for anytime clustering and self-adaptation to stream speed. We propose maintaining clus-
ter features (CFs) by extending index structures from the R-tree family [7,16,24]. Such
hierarchical indexing structures provide the means for efficiently locating the right place
to insert any object from the stream into a micro-cluster. The idea is to build a hierar-
chy of micro-clusters at different levels of granularity. Given enough time, the algorithm
descends the hierarchy in the index to reach the leaf entry that contains the micro-clus-
ter that is most similar to the current object. If this micro-cluster is similar enough, it
is updated incrementally by this object’s values. Otherwise, a new micro-cluster may be
formed.

The important observation for anytime clustering of streaming data, however, is that there
might not always be enough time to reach leaf level to insert the object. We therefore provide
novel strategies for anytime inserts.

There are several possibilities for handling object arrivals before the current object insert
reaches leaf level. The straightforward solution keeps a global queue. This approach is very
simple, but it may require an infinite buffer. And we may never have the time to empty the
queue, resulting in outdated clustering results. To reduce memory consumption, one could
maintain a global aggregate, i.e., instead of the queue a single cluster feature. However,
aggregating arbitrary objects loses too much information as they might be diverse. To main-
tain the necessary information for clustering, and to ensure that any newly arriving object
can be inserted at once, we propose interrupting the insertion process. The object has to be
temporarily stored in a local aggregate from which we can continue at a later time. This
yields foreseeable space demands like with a global aggregate, albeit slightly larger ones.
For the invested space, we obtain a greater accuracy. The great advantage of local aggregates
over local queues is that we can easily use the time for regular inserts to take a buffered local
aggregate along as a “hitchhiker”. Moreover, they can be naturally integrated into the tree
structure. We will discuss this in more detail shortly, after describing the structure of our
ClusTree hierarchical index for maintaining the micro-cluster information.

Our ClusTree approach consists of a hierarchy of entries that describe the cluster feature
properties of their respective subtrees. The structure of an inner entry and a leaf entry is
illustrated in the left part of Fig. 1: Each entry contains a cluster feature of the number n of
objects that were aggregated, their dimension-wise linear sum L S, and squared sum SS, as
well as a pointer to the respective subtree. We propose integrating local aggregates into the
tree structure as temporary entries, so, additionally, an inner entry provides a buffer b for
temporary insertions of local aggregates (CFs). Leaf nodes’ entries do not contain a buffer,
since inserts at leaf level are final.

Definition 3.1 (ClusTree). A ClusTree with fanout parameters m, M and leaf node capac-
ity parameters l, L is a balanced multi-dimensional indexing structure with the following
properties:

– an inner node nodes contains between m and M entries. Leaf nodes contain between l
and L entries. The root has at least one entry.

– an entry in an inner node of a ClusTree stores:

• a cluster feature of the objects it summarizes.
• a cluster feature of the objects in the buffer. (May be empty.)
• a pointer to its child node.
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Fig. 1 Inner node and leaf node structure (left). Insertion object, hitchhiker and buffer (right)

– an entry in a leaf of a ClusTree stores a cluster feature of the object(s) it represents.
– a path from the root to any leaf node has always the same length (balanced).

The tree is created and updated like any multidimensional index such as R-tree, R*-tree,
etc. [16,7,24]. Unlike the minimum bounding rectangles that they maintain in addition to the
objects, we store only CFs in the ClusTree. For insertion, we descent into the subtree with
the closest mean with respect to Euclidean distance. Splitting is based on pairwise distances
between the entries, where entries are combined into two groups such that the sum of the
intra-group distances is minimal. We will show in Sect. 4 that M = 3 is a good choice; hence,
there are maximally six pairwise distances per node yielding a fast split operation.

The important property that reflects anytime capability of the ClusTree is its buffer in
each entry. It serves as a temporary storage place of aggregates or objects that do not reach
leaf level during insertion. Whenever insertion is interrupted, the current CF is simply stored
in the buffer of the entry that corresponds to the subtree into which to descend next. At
any future time when this subtree is next accessed, the temporary entry in the buffer is taken
along as a “hitchhiker”. This makes sure that future descent down the same subtree is used for
continuing the insertion process. Whenever the descent destinations of the current insertion
CF and the hitchhiker differ, the latter is placed in the corresponding buffer again to wait for
the next ride down the tree.

The right part of Fig. 1 illustrates this process. Assume that the insertion object (drawn
blue in the dashed box to the left of the root) belongs to the leaf that is marked by the dashed
arrow (at the second leaf). Assume also, that the leftmost entry on the second level has a filled
buffer (second distribution symbol in the entry), which belongs to a different leaf than the
insertion object (indicated by the red solid arrow at the first leaf). The insertion object first
descends to the second level and next descends into the left entry. It picks up the left entry’s
buffer in its buffer CF for hitchhikers (depicted as the solid box at the right of the insertion
object). The insertion object descends to level three, taking the hitchhiker along. Because the
hitchhiker and the insertion object belong to different subtrees, the hitchhiker is stored in the
buffer of the left entry on the third level (to be taken along further down in the future) and
the insertion object descends into the right entry alone to become (part of) a leaf entry.

Our buffer concept and the algorithmic idea of taking hitchhikers along are key to our
anytime clustering algorithm. It allows the algorithm to be interrupted at any point in time
and making best use of future descents down the tree. Moreover, unlike global aggregates,
objects are kept separate as long as time permits.

When a leaf node is reached and the insertion would cause a split, the algorithm checks
whether there is still time left. If there is no time for a split, the closest two entries are merged.
For tracking of concept drift, novelty, etc. in the output clustering, leaf node entries contain
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a unique id. When they are created, they are assigned a unique number in increasing order.
When entries are merged, this is recorded as a pair of ids in a merging list.

The ClusTree can be initialized to improve the starting structure of the tree. Given an initial
set of objects, each is transformed to a new CF. The leafs and internal nodes may be ordered
for best structural properties through recursive top-down partitioning along the dimension
with the largest variance and such that each partition contains equally many objects. Or any
clustering algorithm, e.g. expectation maximization (EM) [13] or k-means, can be used to
group the objects in a top-down or bottom-up fashion to initialize the tree. Please note that
our focus is not on optimizing the initialization phase, and our experiments are performed
without it.

3.2 Maintaining an up-to-date clustering

In order to maintain an up-to-date view, we would like new objects to be more important than
older objects. A common solution is to weigh objects with an exponential time-dependent
decay function ω(�t) = β−λ�t . The decay rate λ controls how much more one favors new
objects compared to old ones. The higher λ is, the faster the algorithm “forgets” old data. We
chose to set β = 2. For this basis, the half life of objects is 1

λ
.

To incorporate decay, temporal information has to be added to the ClusTree nodes. We
ensure that the inner entries of the ClusTree still summarize their subtrees accurately by
making elements of a cluster feature vector dependent on the current time t :

n(t) =
n∑

i=1

ω(t − tsi ), L S(t) =
n∑

i=1

ω(t − tsi ) · xi ,

SS(t) =
n∑

i=1

ω(t − tsi ) · x2
i

n denotes the (unweighted) number of contributing objects and tsi is the timestamp at which
object xi was added to the CF.

We know that additive properties of cluster features are preserved, and also temporal
multiplicity [3]: If no object is added to a C F (t) during the time interval [t, t +�t], then

C F (t+�t) = ω(�t) · C F (t).

Details on this property and the corresponding proof can be found in [3].
Each insertion object x carries the timestamp tsx of its arrival time. Furthermore, each

entry es has a timestamp es .ts specifying its last update. We use it to compute the time that
passed between the last update of an object and tx , which is the input of the decay function.
Upon descending into a node, we update all entries es in the node to tx by position-wise
multiplication with the decay function and resetting the timestamp: es .C F ← ω(tx − es .ts) ·
es .C F, es .buffer ← ω(tx − es .ts) · es .buffer, es .ts ← tx . Please note that entries in the
same node always have the same timestamp, as we update all entries in the node we descend
into.

We now show that inner entries summarize their subtrees correctly. We derive an invariant
that incorporates the time aspect. The cluster feature of a parent entry es that was last updated
at t + �t equals the sum of the CFs of the entries in its child node updated from time t of
their last update to the parent’s time plus the parent’s buffer.
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Lemma 3.1 (ClusTree Invariant) For each inner entry es with timestamp t +�t and decay
function ω(�t) = 2−λ�t it holds

es .C F (t+�t) =
(

ω(�t) ·
νs∑

i=1

es◦i .C F (t)

)
+ es .buffer(t+�t)

Proof Each inner entry es is created first due to a split. Its summary is calculated directly as
the sum of the cluster features in its child node entries es◦i . The child node entries are all on
the same time, because we update all entries in a node. The timestamp of the children is the
insertion time t of the object x that caused the split. There can only be a change in one of
the es◦i , if there was first a change in es , because we always start from the root and descend
downward.

Take the case of updating parent entry es (with filled buffer) to the new time t +�t +�t ,
and addition of object y, where y descends into nodes and gives the buffer a lift. Upon
descending into nodes , all its entries es◦i are updated and y is added to the CF of exactly
one of the es◦i .es has a buffer, which y takes along. The buffer is also added to exactly one
of the child entries’ cluster features.

Following the above reasoning, we know that after updating es it holds that:

es .C F (t+�t+�t) =
(

ω(�t + �t) ·
νs∑

i=1

es◦i .C F (t)

)
+ es .buffer(t+�t+�t).

Because y descends into nodes , we update the child entries:

=
νs∑

i=1

es◦i .C F (t+�t+�t) + es .buffer(t+�t+�t).

Now we give es .buffer(t+�t+�t) a lift. Afterward es .buffer(t+�t+�t) contains zeros, and the
values that it held before are added to the cluster feature of one of the child entries. Also
adding y on both sides of the equation, once to es .C F and once to the CF of one of the
child node entries, leaves the invariant unchanged. This is also true for “hitchhiking” objects
temporarily in a buffer o (replace y.C F (t+�t+�t) with y.C F (t+�t+�t) + o.C F (t+�t+�t)),
and if nodes is a leaf node.

The last case in which we need to check violate the invariant is a split. Let us consider
the split of a leaf node nodes◦i . Then two summaries in nodes are computed from scratch.
One overwrites the existing entry es◦i that pointed to the split node. The other one is the
start of a new entry. The two new summaries naturally fulfill the invariant. The invariant also
holds true for es , the entry pointing to nodes , because only the distribution of the summaries
changed on the levels below es , not the total of the values. ��

Thus, maintaining a single additional field in each node with a timestamp value of its last
update, and weighing according to the above scheme, ensures that decay with time is cor-
rectly captured. Note that weighing does not require additional memory; the weighted CFs
simply replace the non-weighted cluster features in Definition 3.1.

Weighing with time provides us with an interesting way of avoiding splits, to save valuable
time. If a node is about to be split, our algorithm checks whether the least significant entry
can be discarded, because it no longer contributes significantly to the clustering. Assuming
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that a snapshot of the ClusTree is taken regularly after tsnap time, the significance is tested

by checking whether the entry ê with the smallest n(t)
ê satisfies

n(t)
ê < β−λ·tsnap (1)

If this is the case, ê is discarded, making room for the entry to be inserted, and avoiding a
split. The summary statistics of ê are subtracted from the corresponding path up to the root.
Note that according to Eq. 1, no entry is discarded if a new object has been added to it after
the last snapshot has been taken. Moreover, Eq. 1 guarantees that each entry is stored in at
least one snapshot.

We discuss in Sect. 3.5 how the ClusTree results can be used to detect clusters of arbi-
trary shape and time horizon. Moreover, applicability of recent approaches to concept drift
detection is shown.

3.3 Dealing with very fast streams—Speed-up through aggregation

What happens to our index structure when it faces an exceptionally fast data stream? If inser-
tion is interrupted at the top levels most of the time, the root and upper levels of the tree
aggregate a lot of objects in their buffers that have little chance of getting a lift down to
a leaf. Worse yet, dissimilar objects which belong to different subtrees and leaves become
inseparable in a buffer. The quality of our results is bound to deteriorate if we are constantly
interrupted on higher levels.

We propose a speed-up through aggregation before insertion: If we do not insert each
object individually, there is more time to descend deeper with an aggregate of objects. Naively,
one could add up a certain number m of incoming objects, insert the aggregate, sum up the
next m objects, and so on. This is essentially a global aggregate with the problem of merging
arbitrary objects, even very dissimilar ones, to the same aggregate.

Clearly we need to exercise some control over which objects should—literally—“go
together”. Ideally, we want to aggregate objects that would end up in the same leaf if we
could descend the tree with them. Most probably, the arriving objects are not all similar to
each other, but we expect subgroups with inter-similarity—representatives of the clusters we
also find in the tree.

Our solution is to create several aggregates for dissimilar objects. This makes sure that
the objects summarized in the same aggregate are similar. To this end, we set a maxradius for
the maximum distance of objects in the aggregate. maxradius does not need to be set by the
user. We propose determining its value from the leaf level, as the average variance of the
leaves. This way, the aggregates for fast streams do not deteriorate the quality of the tree
disproportionally.

For very fast streams, we store interrupted objects in their closest aggregate with respect to
the distance to the mean, if this distance is below maxradius. If maxradius is exceeded, we open
up a new aggregate. We insert aggregates, just as we insert single objects. Whenever the inser-
tion thread is idle, it simply picks the next aggregate (ordered first by the number of objects
in the aggregates and then by their age). The number of aggregates is limited by the stream
speed, i.e., it cannot exceed the number of distance computations that can be done between
two arriving items. In the case of a varying data stream, the maximum number of aggregates
has to be set by the user, constituting the only parameter of our approach. The aggregation is
done by a different thread, i.e., the insertion of aggregates works in parallel and is not affected
in terms of processing time. If no aggregate violates the max-radius constraint, the fullest
aggregate is inserted. If several aggregates are equally full, the oldest of these is inserted.
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entries on current
unrefined entries
seen so far sorted by

distance of their
parent to the object

distance to object

priority queue

(a) depth first (b) priority breadth first (c) best first

level sorted by

Fig. 2 Descent strategies depth first, priority breadth first and best first

3.4 Working on slower streams—making better use of time through alternative descent
strategies

In this section, we suggest alternative strategies for inserting objects into micro-clusters.
Assuming the insertion process of an object is not interrupted, so far we have continued
down a single path. This path corresponds to always picking the child with the respective
smallest distance between the object and the children reachable from the current node. This
descent strategy down the tree can be considered a single-try depth first approach. This means
that we continue down a path that has been chosen, and do not reconsider, i.e., we do not
explore continuing a path that branches further up the tree. The advantage of this approach
is that we spend the (unknown) time available to the anytime insertion process on trying to
reach a level as far down the tree as possible (cf. Fig. 2). The further down the tree we insert
the object, the more fine-grained the resolution of the micro-clusters. When the insertion
process reaches the leaf level and additional time is available, the leaf is split and hence the
model size is automatically adapted to the stream speed.

For very fast streams, we prevent frequent insertions on higher levels through our aggre-
gation mechanisms (cf. Sect. 3.3). For slower data streams, however, we are very likely to
often reach the leaf level and hence the model, i.e., the tree, continues to grow. As stated in
the introduction, stream clustering algorithms naturally have to cope with limited memory,
i.e., there is a maximal model size, either dictated through the available memory or given by
the user or the context program. Continuous growth of the model is thus not ideal if more
time is available.

Employing the proposed depth first strategy in this case would leave the algorithm idle
once the leaf level is reached. And such idle times actually occur. One of the reasons is that
our anytime processing is fast, so it reaches the leaf level after few computation steps. In the
ClusTree algorithm, the number of distance computations is only logarithmic in the number
of maintained micro clusters, so time for further model improvement is often available even
for larger model sizes. As we will see in the experimental Sect. 4.3, maintaining 400,000
micro clusters at a stream speed of 50,000 points per second already yields idle times, which
can be used for further computations and improvements of the clustering result.

In the following, we therefore explore alternative ways of choosing paths down the tree,
as well as ways on how to spend any time that might still be available after reaching leaf
level due to small model size and variation in object inter-arrival times.

3.4.1 Priority breadth first traversal

Our first alternative descent strategy is a priority breadth first descent. The single path depth
first descent does not perform any kind of backtracking and hence cannot correct any mis-
guided choice that might occur due to overlapping entries on higher levels of the tree. In
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other words, even if we chose the closest entry on level k, we cannot be sure that the closest
entry on level k + 1 is one of its children. To assure finding the closest entry on each level,
we therefore propose to evaluate all entries per level. While doing this, we sort the entries
by the distance of their corresponding parent to quickly find the closest option. Figure 2b
illustrates the priority breadth first descent: instead of checking a single node on each level
as in depth first descent, each level is evaluated to find the closest entry by going through a
list of entries sorted by the distance between the parent node and the current insertion object.

While at first the breadth first traversal sounds like a lot of additional computations com-
pared to linearly checking against all maintained micro clusters as in e.g. [2,8], a closer look
reveals advantages of this strategy. In the case of a binary tree, the number of non-leaf entries
is about equal to the number of leaf entries. However, for a higher fanout, the number of inner
entries is relatively smaller. Taking the fact into account that we sort the entries according
to the distance of their corresponding parent entry, we are likely to find the closest leaf level
entry, i.e., the closest maintained micro cluster, within the first entries of the priority queue
on the leaf level. Moreover, we are still able to perform anytime clustering, since we always
use the buffering strategies described above (cf. Sect. 3.1). The only change is that the entries
on the final path are updated at the time of interruption and not as we go down the path. That
means that we add the number, linear and quadratic sum when the object is inserted. Since
maintaining 50,000 micro clusters with a fanout of 3 yields a tree height of 10, the number
of operations (additions) is negligible.

3.4.2 Best first traversal

As mentioned before, the underlying idea for our alternative descent strategies is based on
the observation that by descending the tree depth first, we basically use a greedy approach
that is not able to revise the decision for any given subtree. However, it is possible that the
aggregate information on upper levels in the tree is misleading. Misleading in the sense that
we might find at lower levels that an entry that had a short distance to the current object
actually separates into micro-clusters at lower levels that have a comparatively high distance
to the object.

In such a situation, it might be beneficial for the structure of the obtained micro-clusters
to not continue on this path, but instead evaluate the situation at the children of the next-best
choice. This means that we need to keep track of which options existed on the current path.
This allows us to decide whether one of the branches further up on the current path has a
distance to the object that is smaller than what we see for the current entry. If this is the case,
we can go back and follow a different path. In query processing on indexing structures, this
approach corresponds to a best first strategy [7,16,24]. To implement it, we need to maintain
a priority queue while making the descent down the tree.

The priority queue contains the entries seen so far that have not been refined yet and
their corresponding distance to the insertion object. Given the time to make the next step
in descending down the tree, the best first approach always takes the first element from the
queue, i.e., the entry which has the smallest distance to the object. The distances from the
object to the entries in the corresponding child node are computed and inserted into the prior-
ity queue (refinement). This process continues until insertion is interrupted or until all nodes
have been visited. As in the priority breadth first descent we keep the property of anytime
clustering and update the path with cluster features (CFs) when we buffer or insert the object
on interruption.

The best first strategy means that the decision which node to refine is now based on all
the information that the algorithm has at the time of the decision making. The next descent

123



260 P. Kranen et al.

Fig. 3 Iterative depth first
descent. When the algorithm is
interrupted the best leaf seen so
far is chosen for insertion

First level:

x x

Second level:

x x

Third level …

step is always to the entry that has the smallest distance to the object, regardless of whether
this means that we continue on the deepest path or not. In this sense, best first descent is a
global strategy that takes all nodes into account, whereas depth first descent is local in the
sense that a choice is only made among the children of the currently visited node. Figure 2c
illustrates this strategy. As we can see, this algorithm maintains a priority queue of the lowest
entries on all paths started so far, i.e., unrefined entries sorted by their distance to the object.
The path is always continued on the path corresponding to the first entry in the queue.

3.4.3 Iterative depth first descent

In terms of anytime clustering, best first descent tries to optimize the selection of insertion
nodes. A possible drawback of this strategy is that depending on how often the algorithm
has to go back and continue from upper nodes and on how soon it is interrupted, the algo-
rithm might remain at the upper levels and buffer the object there. Similar drawbacks can be
expected from the priority breadth first strategy. In contrast, depth first processing is most
often able to reach leaf level.

Based on this analysis, we suggest an alternative descent strategy that tries to reach leaf
level, and if more time is available uses this time to validate the decisions that were taken.
This can be considered a compromise between depth first, priority breadth first and best first
strategies. We denote this approach as the iterative depth first descent strategy. The idea
here is to start with the original depth first descent. Upon reaching leaf level, we iteratively
evaluate the alternatives for decisions taken at the nodes on the depth first path as long as
time permits.

Figure 3 illustrates the strategy. The algorithm starts by descending down the tree as in
the depth first approach (top left). Assuming that it is not interrupted, it then goes back to the
root level and descends into the siblings of the entry chosen during the first iteration down
the tree. Following down these alternatives to the leaf level, we eventually obtain two more
candidate leaves among which we can choose to insert (top center of Fig. 3). Among these
three options, we now pick the best one as shown at the top right of Fig. 3.

If there is still time, we repeat this process on the path leading to our current optimum
(bottom left of Fig. 3). We descend down the paths corresponding to the siblings of the node
one level below the root on our current optimum path (bottom center of Fig. 3). This yields
once again three options to choose from (bottom right of Fig. 3). This process is continued
until the algorithm is interrupted or until no more unchecked siblings on the path remain.
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On interrupt we buffer/insert and update as in the other strategies described above. All in all,
using this strategy we will have at most log2(n) comparisons, e.g. for 50,000 micro-clusters
and a fanout of 3 about 100 comparisons, which is in stark contrast to 50,000 comparisons
as in e.g. [2,8].

With these alternative descent strategies, we complete the concept of anytime clustering
in the sense that we use any possible idle time to improve the insertion process. Whereas
the depth first descent strategy stops once the maximal model size is obtained and a leaf is
reached, priority breadth first, best first and iterative depth first descent make use of additional
time to check alternative insertion options. In this manner, our anytime clustering accounts
for very short time spans per object through aggregation and for very long time spans through
further optimization of inserts.

3.5 Cluster shapes and cluster transitions

The clustering resulting from the ClusTree is the set of CFs stored at leaf level, i.e., the finest
representation maintainable w.r.t. the speed of the data stream. This can be seen as our online
component and it allows for using various offline clustering approaches. Taking the means
of the CFs as representatives, we can apply a k-center clustering as in [23] or density based
clustering as proposed in [8] to detect clusters of arbitrary shape. One main advantage of our
approach is that we can maintain a way larger number of micro-clusters compared to other
approaches [2,3,23,8] and hence the offline clustering, e.g. density based, has finer input
granularity.

Regarding cluster transitions, e.g. concept drift or novelty, many approaches proposed in
the literature can directly be applied to the output of our ClusTree. Using the unique ids to
every new leaf entry, we are able to track micro-clusters. Pyramidal time frames [2] allow
the user to view clusterings of arbitrary time horizons. Furthermore, the ids allow us also to
apply the transition detection and distinction techniques described in [25], including outlier,
novelty, and concept drift detection.

3.6 Summary of the ClusTree algorithm

The proposed technical solutions and their benefits can be summarized as follows:

– Hierarchical data structure—yields a logarithmic insertion complexity and a fine grained
clustering, e.g. as input for an offline component (cf. Sect. 3.1)

– Buffer & hitchhiker concept—enables anytime clustering and a self-adaptive model size
(cf. Sect. 3.1)

– Exponential decay—allows for aging of older items and reusing of insignificant entries
(cf. Sect. 3.2)

– Aggregation—improves clustering quality on very fast streams (cf. Sect. 3.3)
– Alternative descent strategies—exploit additional time in case of slower streams and

optimize the insertion (cf. Sect. 3.4)
– Cluster features and IDs—make the ClusTree compatible with existing work for drift,

novelty, arbitrary shapes, etc. (cf. Sect. 3.5)

Figure 4 summarizes the complete ClusTree algorithm (using depth first descent) in a flow
chart. We evaluate the performance of our approach and of the alternative descent strategies
in the following empirical study.
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Fig. 4 Flow chart of the ClusTree algorithm

4 Analysis and experiments

We assess the performance of the ClusTree in the following. First, we examine the time
and space complexity of building and maintaining a ClusTree in Sect. 4.1. In Sect. 4.2,
we evaluate the anytime clustering property of the ClusTree and show the benefits of our
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speed-up through aggregation. Finally, we demonstrate the adaptive clustering performance
in Sect. 4.3 by comparing our results against CluStream [2] and DenStream [8]. The algo-
rithms were implemented in C, all experiments were run on Windows machines with 3 GHz.
The employed real and synthetic data sets are described in Sect. 4.2 before their first usage.

4.1 Time and space complexity

Our goal for efficient and effective clustering is a high granularity with low processing costs.
Therefore, we investigate the effect of the fanout and of the number of distance computations
required to insert an object from the stream on the granularity, i.e., the number of cluster
features (CFs) at leaf level. Figure 5(a) shows the results for fanouts from 2 to 12. Depending
on the speed of the stream, 12–72 distance computations are possible before interruption (we
chose multiples of 12 on the x-axis because it is the smallest multiple of all tested fanouts).
As can clearly be seen in all groups of bars, a fanout of three yields the highest granularity
independent of the number of distance computations, i.e., of stream speed.

Next we evaluate the space demands with respect to the dimensionality and granularity
in Fig. 5b. It shows the results for a fanout of 3 (assuming 4 Bytes per value). The space
demands for the ClusTree are moderate even for high granularities and high dimensionality.
For 128.000 CF at leaf level and 20 dimensions the ClusTree only needs 68 MB space, while
the number of distance computations to reach the leaf level is only 33. Fanout 3, dimen-
sionality 20 and one million CF at the finest level consume roughly 500 MB, i.e., still main
memory, and the number of distance computations is still less than 40. This is opposed to any
stream clustering algorithm that maintains one million micro-clusters and checking a new
item against each of these. CluStream [2] for example stores q micro-clusters and hence has
to calculate q distances (plus possible delete O(q) and merge O(q2) checks). We only need
O(log(q)) many distance calculations and only store O(q) CF (cf. Fig. 5).
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Figure 5c shows the space demand of the ClusTree for 128.000 CF at leaf level, different
dimensionality and different fanout values. While a higher fanout yields less space demands,
the number of distance computations that are necessary to reach the same granularity is sig-
nificantly higher. Combining the results from Fig. 5, we conclude that a fanout of 3 is the
best choice in terms of time and space complexity.

Given the fanout of 3, the costs for a single split are low: 4 entries are present during split;
hence, 6 distances are calculated. A new node and one new entry for the parent node are
created, and the old node and the old entry pointing to it are updated. In the worst case, the
number of splits is equal to the height of the tree. Moreover, once the tree size is adapted to
the stream speed and decay invalidates old entries, the number of splits is practically zero.

4.2 Anytime clustering and aggregation

To evaluate the clustering quality of the ClusTree, we evaluate the average purity of the clus-
ters on the different levels of the tree. To determine the purity, we use synthetic as well as real
world data that contains objects labeled with one of several classes. For a set K of CFs, the
purity is then calculated as the weighted average purity of all CFs in K :∑|K |k=1

nk
n ·maxc(nck )

nk
=

1
n

∑|K |
k=1 maxc(nck), where nk is the number of objects in the CF k, nck those belonging to

class c and n =∑
k∈K nk . The real world data set Forest Covertype is available from [17] and

contains roughly 580.000 objects from 7 classes and 10 continuous attributes. To investigate
the scalability of the ClusTree in terms of dimensionality and the number of clusters we use
synthetic data sets containing 550.000 objects each (including 5% noise) and a varying num-
ber of attributes and classes (see individual experiments for explicit numbers). The clusters
are generated as a hierarchy of Gaussians with three levels, where centers lie at a uniformly
distributed angle and distance from their parents in the unit cube. To simulate a varying
stream we generated the arrival intervals according to a Poisson process, a stochastic model
that is often used to model random arrivals [14]. For the anytime experiments, we generated
a stream with an expected number of 90,000 points per second, i.e., λ = 1/90000.

Figure 6a shows the results for Forest Covertype (bottom) and the synthetic data set con-
taining four classes and four dimensions (top). The results shown are the purity values after
the complete data set has been processed. The top most bar (orange) represents the purity
value at the root level and each following bar corresponds to the next deeper level. (Please
note that for synthetic data the root level bar is not visible as the axis has been formatted to
show the difference on the lower levels.) The resulting ClusTree had ten levels for the syn-
thetic data and 9 levels for the Forest Covertype data set. The most interesting purity value is
that of the leaf level representing the finest micro-clustering granularity. It is above 99% for
the synthetic data and still 88% for Forest Covertype. The purity values on the higher levels
of the tree give an indication for the clustering quality for higher stream speeds. We show
further results on varying stream speed in Sect. 4.3. Except for the leaf level, the purity values
on the synthetic data set are above 95% on all levels, showing that the noise objects have
been separated very well. The purity decreases more significantly for the Forest Covertype
data, but is still above 70% even three levels underneath the root.

Figure 6b, c show the results regarding scalability using the same anytime stream as
before. We varied the number of classes from 2 to 8 at four dimensions (left) and the number
of dimensions from 2 to 8 using 4 classes (right). For 2 and 4 classes the quality is consis-
tently high on all levels, just the root level purity drops at 4 classes, and further (below the
shown area) for 8 classes. Increasing the number of classes to 8 shows a higher impact on the
root level and also one level below the root. Although the purity decreases also on the other
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Fig. 6 a Clustering purity on synthetic data (top) and on Forest Covertype (bottom). b Scalability w.r.t. the
number of clusters; c Scalability w.r.t. the number of dimensions

levels it is still above 95% on six levels, indicating a good separation of classes and even of
noise objects. Comparing the results on different dimensionalities shows that the quality is
similar for 4–8 dimensions, but lower in the 2-dimension case. This is due the fact that the
overlapping of the classes is higher if the dimensionality decreases. However, once again the
majority of the levels has a purity above 95%.

Finally, we evaluated different stream speeds, i.e., we varied the expected number of points
per second (pps) from 60,000 to 150,000. Figure 7 shows the resulting purity values for the
leaf level and the middle level of the ClusTree for Forest Covertype. For the slowest stream,
the purity on the leaf level reaches 93%. While the purity is still very good (87%) at 120,000
pps it drops below 70% for even faster streams with 150,000 pps. For our proposed speed-up
through aggregation (cf. Sect. 3), the results for 150,000 pps are shown in the left part of
Fig. 7. Thanks to the aggregation the purity on the leaf level is significantly improved.
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4.3 Adaptive clustering

To evaluate the adaptive clustering behavior of the ClusTree, we simulated constant data
streams with different numbers of points per second using the Forest Covertype data set. We
compare our performance against CluStream [2] and DenStream [8]. For all approaches, we
report the results of the online component, i.e., we analyze the properties of the resulting
micro clusters and do not employ an additional offline component afterward.

First of all, we investigate the number of micro clusters that can be maintained by the
individual approaches for different stream speeds. The results are shown in Fig. 8, exact
numbers are listed in Table 1. As indicated, the ClusTree can maintain roughly 430,000
micro clusters at 49,000 pps. With a stream speed of 140,000 pps, the ClusTree can still
maintain 435 micro clusters. The competing approaches on the other hand can only process
less than 10,000 pps when maintaining 500 micro clusters. This drastic difference is due to
the hierarchical structure of the ClusTree which yields only a logarithmic amount of distance
computations. In other words, the number of micro clusters we can maintain is exponential
compared to CluStream or DenStream. This large number is beneficial, since the output of
the online component is given to the offline component to compute the final clustering (using
a clustering method of choice). A more detailed input to the final clustering enables more
accurate results and detection of possible outliers. Moreover, the major advantage here is that
the ClusTree automatically self-adapts to the stream speed without parametrization.

The question is at which price comes this benefit? Does the quality of the individual micro
clusters deteriorate, because new points might not be added to the optimal micro cluster? To
answer this question, we evaluated the radius and the purity of the resulting micro clusters
from all three approaches. Figure 9 shows the results for the ClusTree, results for CluStream
and DenStream are listed in Table 1.

For the radius, we report the maximum as well as the 75 percentile and the median in
Fig. 9. Since the actual numbers are skewed, we plot a moving average value. Naturally, with
increasing stream speed, and hence decreasing number of micro clusters, the radii gener-
ally become larger. However, while we see a constant increase in the maximum value, the
median and even the 75 percentile stays very low even for 100,000 to 150,000 pps. While
DenStream produces larger micro clusters, CluStream shows a similar performance for the
same amount of micro clusters. However, to maintain this amount of micro clusters CluStream
can again only process slow streams where it is outperformed by our approach.

The purity values for CluStream, DenStream and our novel ClusTree approach underline
the above findings (cf. Table 1). DenStream does not exceed an average purity of 70%.
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Table 1 Overall results on
Forest Covertype

#MC pps Radius (median) Radius (max.) Purity

DenStream
5,000 2,000 0.21 151.8 0.53

2,000 3,700 0.24 195.1 0.55

1,000 5,000 3.35 160.9 0.66

500 7,600 14.01 83.7 0.53

CluStream
5,000 1,500 0.02 37.4 0.70

2,000 1,700 0.03 224.4 0.87

1,000 2,500 0.33 238.8 0.90

500 6,500 0.58 177.6 0.62

ClusTree
5,000 80,000 0.44 13.8 0.72

2,000 94,000 0.51 18.9 0.71

1,000 105,000 0.55 21.8 0.70

500 120,000 2.25 29.7 0.67
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Fig. 9 Radius (left) and purity (right) for ClusTree micro clusters w.r.t stream speed

Clustream shows a higher purity than the ClusTree for 1,000 micro clusters (90% for
CluStream vs. 78% for the ClusTree), but again these numbers are not comparable due
to the huge difference in terms of points per second. In conclusion, it can be said that the
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ClusTree can maintain an equal amount of micro clusters on streams that are faster by orders
of magnitude and that it can maintain an exponential amount of micro clusters at equal stream
speed while providing good results in terms of cluster size (radius) and quality (purity).

5 Evaluation of descent strategies

Due to the logarithmic number of distance computations that are necessary to maintain a
certain number of micro-clusters in the ClusTree, in a given time frame we can maintain
an exponential number of micro-clusters compared to linear approaches. This fact is inher-
ent to the hierarchical ClusTree approach and was confirmed by the results in the previous
section. If the model size, i.e., the tree size, is limited either through limited memory or user
constraints, the ClusTree algorithm will be idle on slower streams once the maximal model
size has been reached.

This can also be seen in some of our previous experimental results. For example, in Fig. 8
at the top left the algorithm maintains approximately the same number of micro-clusters for
a large range of stream speeds. It reaches the maximal number of micro-clusters at approxi-
mately 50,000 pps. This means that for streams below this, the algorithm is idle once it has
reached leaf level.

To exploit these possible idle times for improving the clustering result, we introduced
different descent strategies in Sect. 3.4 that continue searching for better insertion options as
long as time permits. Together with the speed-up strategies for very fast streams, the alter-
native insertion strategies complete our anytime stream clustering approach. In this section,
we evaluate the workings and benefits of the proposed descent strategies.

We evaluate the four strategies depth first, breadth first, best first and iterative depth first
on the previously mentioned Forest Covertype data set using different tree heights and vary-
ing stream speeds. The tested tree heights 7, 9 and 11 correspond to roughly 2000, 20,000
and 170,000 possible micro-clusters at leaf level. The stream speed was varied from 600 pps
to 60,000 pps; we report the time per object on the x-axis (in μs/object) such that there is
more time per insertion from left to right. As in the previous experiments we measure both
the average purity values and the median of the resulting radii. Figure 10 summarizes the
results.

Throughout the results in Fig. 10, the primary descent strategy depth first and the novel iter-
ative depth first descent show the same results on the fastest stream speed setting (17μs/object,
corresponding to roughly 60,000 pps). This is due to the fact that both strategies start with
the same initial solution. While the depth first approach stops once the leaf level is reached,
the iterative depth first uses additional time and might find a better micro-cluster to insert
the current object. For all tested tree heights the iterative depth first slightly improves in
both measures for slower streams, i.e., higher purity values and smaller radii are achieved.
Since the number of distance computations is in O(log2(n)), the iterative depth first strategy
cannot profit from even more time per object. This means that for even slower streams, the
corresponding graphs show a stagnating behavior early on.

The best first and the priority breadth first strategies show nearly the same performance.
Since neither of these strategies favors an initial descent to reach the leaf level, they process
all (the many) entries on the upper levels of the tree before continuing on the next level.
As a consequence, these approaches do not reach the maximal tree size on faster streams.
As can be seen in the left part of Fig. 10, the full tree height is only reached at 600 μs/object
for tree height 7 and 1200 μs/object for tree height 9. With this time allowance, the strategies
evaluate all possible option and hence no further improvement is reached on even slower
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Fig. 10 Purity values for different tree heights and varying stream speeds (left). The corresponding radii
(median) (right)

streams for the respective maximal model size. However, for all tested tree heights, both the
best first and the priority breadth first strategy outperform the two depth first approaches
in terms of the average purity. Regarding the achieved radii, the depth first approaches are
outperformed on the smaller tree and their performance is met on the larger trees for slower
streams (cf. Fig. 10 right). The maximum radius, however, as e.g. Fig. 9 illustrates, was the
lowest throughout the experiments using best first or priority breadth first.

Summarizing the results for the four proposed descent strategies, we note that the simple
depth first descent yields already good results, especially on larger tree/model sizes. The best
first approach and the priority breadth first approach improved the results consistently on
slower streams, which can be attributed to their strategy of testing all possible options (if
time permits). The iterative depth first descent strategy constitutes an excellent alternative
insertion strategy, since it starts with the same high performance as the depth first strat-
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egy, has very low runtime (O(log2(n))), and yet improves the initial solutions on all tested
settings. Moreover, it finally reaches comparable high-quality results compared to all other
approaches.

6 Conclusion

Clustering streaming data is of increasing importance in many applications. In this work, we
proposed a parameter free index-based approach that self-adapts to varying stream speed and
is capable of anytime clustering. Our ClusTree maintains the values necessary for comput-
ing mean and variance of micro-clusters. By incorporating local aggregates, i.e., temporary
buffers for “hitchhikers”, we provide a novel solution for easy interruption of the insertion
process that can be simply resumed at any later point in time. For very fast streams, aggregates
of similar objects allow insertion of groups instead of single objects for even faster processing.
For slower stream settings, we proposed alternative insertion strategies that exploit possible
idle times of the algorithm to improve the quality of the resulting clustering. By comparison
with recent approaches, we have shown that the ClusTree can maintain the same amount of
micro clusters at stream speeds that are faster by orders of magnitude and that for equal stream
speeds our granularity is exponential w.r.t. competing approaches. Moreover, we discussed
compatibility of our approach to finding clusters of arbitrary shape and to modeling cluster
transitions and data evolution using recent approaches.
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