[mlpack-git] master: Allow specification of the number of bins and observations before binning. (00c77fc)
gitdub at big.cc.gt.atl.ga.us
gitdub at big.cc.gt.atl.ga.us
Wed Dec 23 11:46:34 EST 2015
Repository : https://github.com/mlpack/mlpack
On branch : master
Link : https://github.com/mlpack/mlpack/compare/de9cc4b05069e1fa4793d9355f2f595af5ff45d2...6070527af14296cd99739de6c62666cc5d2a2125
>---------------------------------------------------------------
commit 00c77fc789f53ba3579c43950be9726b19fd73b7
Author: ryan <ryan at ratml.org>
Date: Mon Nov 23 16:54:36 2015 -0500
Allow specification of the number of bins and observations before binning.
>---------------------------------------------------------------
00c77fc789f53ba3579c43950be9726b19fd73b7
.../methods/hoeffding_trees/hoeffding_tree.hpp | 5 +++
.../hoeffding_trees/hoeffding_tree_main.cpp | 40 +++++++++++++++++++---
2 files changed, 40 insertions(+), 5 deletions(-)
diff --git a/src/mlpack/methods/hoeffding_trees/hoeffding_tree.hpp b/src/mlpack/methods/hoeffding_trees/hoeffding_tree.hpp
index 1d0f81c..ddf3d1b 100644
--- a/src/mlpack/methods/hoeffding_trees/hoeffding_tree.hpp
+++ b/src/mlpack/methods/hoeffding_trees/hoeffding_tree.hpp
@@ -55,6 +55,11 @@ template<typename FitnessFunction = GiniImpurity,
class HoeffdingTree
{
public:
+ //! Allow access to the numeric split type.
+ typedef NumericSplitType<FitnessFunction> NumericSplit;
+ //! Allow access to the categorical split type.
+ typedef CategoricalSplitType<FitnessFunction> CategoricalSplit;
+
/**
* Construct the Hoeffding tree with the given parameters and given training
* data. The tree may be trained either in batch mode (which looks at all
diff --git a/src/mlpack/methods/hoeffding_trees/hoeffding_tree_main.cpp b/src/mlpack/methods/hoeffding_trees/hoeffding_tree_main.cpp
index dd6caef..e2113e7 100644
--- a/src/mlpack/methods/hoeffding_trees/hoeffding_tree_main.cpp
+++ b/src/mlpack/methods/hoeffding_trees/hoeffding_tree_main.cpp
@@ -40,9 +40,16 @@ PARAM_FLAG("info_gain", "If set, information gain is used instead of Gini "
"impurity for calculating Hoeffding bounds.", "i");
PARAM_INT("passes", "Number of passes to take over the dataset.", "s", 1);
+PARAM_INT("bins", "If the 'domingos' split strategy is used, this specifies "
+ "the number of bins for each numeric split.", "B", 10);
+PARAM_INT("observations_before_binning", "If the 'domingos' split strategy is "
+ "used, this specifies the number of samples observed before binning is "
+ "performed.", "o", 100);
+
// Helper function for once we have chosen a tree type.
template<typename TreeType>
-void PerformActions();
+void PerformActions(const typename TreeType::NumericSplit& numericSplit =
+ typename TreeType::NumericSplit(0));
int main(int argc, char** argv)
{
@@ -81,33 +88,55 @@ int main(int argc, char** argv)
if (CLI::HasParam("info_gain"))
{
if (numericSplitStrategy == "domingos")
+ {
+ const size_t bins = (size_t) CLI::GetParam<int>("bins");
+ const size_t observationsBeforeBinning = (size_t)
+ CLI::GetParam<int>("observations_before_binning");
+ HoeffdingDoubleNumericSplit<InformationGain> ns(0, bins,
+ observationsBeforeBinning);
PerformActions<HoeffdingTree<InformationGain, HoeffdingDoubleNumericSplit,
- HoeffdingCategoricalSplit>>();
+ HoeffdingCategoricalSplit>>(ns);
+ }
else if (numericSplitStrategy == "binary")
+ {
PerformActions<HoeffdingTree<InformationGain, BinaryDoubleNumericSplit,
HoeffdingCategoricalSplit>>();
+ }
else
+ {
Log::Fatal << "Unrecognized numeric split strategy ("
<< numericSplitStrategy << ")! Must be 'domingos' or 'binary'."
<< endl;
+ }
}
else
{
if (numericSplitStrategy == "domingos")
+ {
+ const size_t bins = (size_t) CLI::GetParam<int>("bins");
+ const size_t observationsBeforeBinning = (size_t)
+ CLI::GetParam<int>("observations_before_binning");
+ HoeffdingDoubleNumericSplit<GiniImpurity> ns(0, bins,
+ observationsBeforeBinning);
PerformActions<HoeffdingTree<GiniImpurity, HoeffdingDoubleNumericSplit,
- HoeffdingCategoricalSplit>>();
+ HoeffdingCategoricalSplit>>(ns);
+ }
else if (numericSplitStrategy == "binary")
+ {
PerformActions<HoeffdingTree<GiniImpurity, BinaryDoubleNumericSplit,
HoeffdingCategoricalSplit>>();
+ }
else
+ {
Log::Fatal << "Unrecognized numeric split strategy ("
<< numericSplitStrategy << ")! Must be 'domingos' or 'binary'."
<< endl;
+ }
}
}
template<typename TreeType>
-void PerformActions()
+void PerformActions(const typename TreeType::NumericSplit& numericSplit)
{
// Load necessary parameters.
const string trainingFile = CLI::GetParam<string>("training_file");
@@ -145,7 +174,8 @@ void PerformActions()
Log::Info << "Taking " << passes << " passes over the dataset." << endl;
tree = new TreeType(trainingSet, datasetInfo, labels, max(labels) + 1,
- batchTraining, confidence, maxSamples, 100, minSamples);
+ batchTraining, confidence, maxSamples, 100, minSamples,
+ typename TreeType::CategoricalSplit(0, 0), numericSplit);
for (size_t i = 1; i < passes; ++i)
tree->Train(trainingSet, labels, false);
More information about the mlpack-git
mailing list