[mlpack-svn] r10089 - mlpack/trunk/src/mlpack/methods/linear_regression
fastlab-svn at coffeetalk-1.cc.gatech.edu
fastlab-svn at coffeetalk-1.cc.gatech.edu
Mon Oct 31 11:41:28 EDT 2011
Author: jcline3
Date: 2011-10-31 11:41:27 -0400 (Mon, 31 Oct 2011)
New Revision: 10089
Modified:
mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.cpp
mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.hpp
mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_main.cpp
mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_test.cpp
Log:
Fix braces, #153
Modified: mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.cpp
===================================================================
--- mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.cpp 2011-10-31 15:26:59 UTC (rev 10088)
+++ mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.cpp 2011-10-31 15:41:27 UTC (rev 10089)
@@ -27,7 +27,9 @@
parameters.load(filename);
}
-LinearRegression::~LinearRegression() {}
+LinearRegression::~LinearRegression()
+{
+}
void LinearRegression::predict(arma::rowvec& predictions, const arma::mat& points)
{
@@ -39,15 +41,18 @@
predictions.set_size(n_cols);
predictions += parameters(0);
- for(size_t i = 1; i < n_rows; ++i) {
- for(size_t j = 0; j < n_cols; ++j) {
+ for(size_t i = 1; i < n_rows; ++i)
+ {
+ for(size_t j = 0; j < n_cols; ++j)
+ {
predictions(j) += parameters(i) * points(i-1,j);
}
}
}
-arma::vec LinearRegression::getParameters() {
+arma::vec LinearRegression::getParameters()
+{
return parameters;
}
Modified: mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.hpp
===================================================================
--- mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.hpp 2011-10-31 15:26:59 UTC (rev 10088)
+++ mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression.hpp 2011-10-31 15:41:27 UTC (rev 10089)
@@ -8,7 +8,8 @@
/**
* A simple linear regresion algorithm using ordinary least squares.
*/
-class LinearRegression {
+class LinearRegression
+{
public:
/** Creates the model.
* @param predictors X, matrix of data points to create B with.
Modified: mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_main.cpp
===================================================================
--- mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_main.cpp 2011-10-31 15:26:59 UTC (rev 10088)
+++ mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_main.cpp 2011-10-31 15:41:27 UTC (rev 10089)
@@ -13,7 +13,8 @@
PROGRAM_INFO("Simple Linear Regression", "An implementation of simple linear \
regression using ordinary least squares.", "linear_regression");
-int main(int argc, char* argv[]) {
+int main(int argc, char* argv[])
+{
arma::vec B;
arma::colvec responses;
@@ -33,21 +34,25 @@
size_t n_cols = file.n_cols,
n_rows = file.n_rows;
- if(response_name == "") {
+ if(response_name == "")
+ {
predictors = file.submat(0,0, n_rows-2, n_cols-1);
// The initial predictors for y, Nx1
responses = arma::trans(file.row(n_rows-1));
--n_rows;
}
- else {
+ else
+ {
predictors = file;
// The initial predictors for y, Nx1
responses.load(response_name.c_str(), arma::auto_detect, false, true);
- if(responses.n_rows > 1) {
+ if(responses.n_rows > 1)
+ {
std::cerr << "Error: The responses must have one column.\n";
return 0;
}
- if(responses.n_cols != n_cols) {
+ if(responses.n_cols != n_cols)
+ {
std::cerr << "Error: The responses must have the same number of rows as\
the training file.\n";
return 0;
@@ -55,7 +60,8 @@
}
points.load(test_name.c_str(), arma::auto_detect, false, true);
- if(points.n_rows != n_rows) {
+ if(points.n_rows != n_rows)
+ {
std::cerr << "Error: The test data must have the same number of cols as\
the training file.\n";
return 0;
Modified: mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_test.cpp
===================================================================
--- mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_test.cpp 2011-10-31 15:26:59 UTC (rev 10088)
+++ mlpack/trunk/src/mlpack/methods/linear_regression/linear_regression_test.cpp 2011-10-31 15:41:27 UTC (rev 10089)
@@ -8,7 +8,8 @@
* Creates two 10x3 random matrices and one 10x1 "results" matrix.
* Finds B in y=BX with one matrix, then predicts against the other.
*/
-BOOST_AUTO_TEST_CASE(LinearRegressionTest) {
+BOOST_AUTO_TEST_CASE(LinearRegressionTest)
+{
// predictors, points are 10x3 matrices
arma::mat predictors, points;
@@ -28,7 +29,8 @@
// Create y
responses.zeros(10);
// Create a second "class" for the first cluster of points
- for(size_t i = 0; i < 5; ++i) {
+ for(size_t i = 0; i < 5; ++i)
+ {
responses(i) = 1;
}
responses += 1; // "classes" are 2,1
@@ -42,7 +44,8 @@
// Output result and verify we have less than .5 error from "correct" value
// for each point
std::cout << points << '\n' << predictions << '\n';
- for(size_t i = 0; i < predictions.n_cols; ++i) {
+ for(size_t i = 0; i < predictions.n_cols; ++i)
+ {
assert( fabs(predictions(i) - responses(i)) < .5);
}
}
More information about the mlpack-svn
mailing list