[mlpack-svn] r10839 - mlpack/trunk/src/mlpack
fastlab-svn at coffeetalk-1.cc.gatech.edu
fastlab-svn at coffeetalk-1.cc.gatech.edu
Fri Dec 16 01:35:14 EST 2011
Author: rcurtin
Date: 2011-12-16 01:35:14 -0500 (Fri, 16 Dec 2011)
New Revision: 10839
Modified:
mlpack/trunk/src/mlpack/core.hpp
Log:
Better documentation. Now we have a quick guide to MLPACK.
Modified: mlpack/trunk/src/mlpack/core.hpp
===================================================================
--- mlpack/trunk/src/mlpack/core.hpp 2011-12-16 06:34:38 UTC (rev 10838)
+++ mlpack/trunk/src/mlpack/core.hpp 2011-12-16 06:35:14 UTC (rev 10839)
@@ -26,9 +26,8 @@
* @section howto How To Use This Documentation
*
* This documentation is API documentation similar to Javadoc. It isn't
- * necessarily a tutorial (that can be found elsewhere -- ...once we make a
- * tutorial), but it does provide detailed documentation on every namespace,
- * method, and class.
+ * necessarily a tutorial, but it does provide detailed documentation on every
+ * namespace, method, and class.
*
* Each MLPACK namespace generally refers to one machine learning method, so
* browsing the list of namespaces provides some insight as to the breadth of
@@ -41,6 +40,48 @@
* $ doxygen
* @endcode
*
+ * @section executables Executables
+ *
+ * MLPACK provides several executables so that MLPACK methods can be used
+ * without any need for knowledge of C++. These executables are all
+ * self-documented, and that documentation can be accessed by running the
+ * executables with the '-h' or '--help' flag.
+ *
+ * A full list of executables is given below:
+ *
+ * allkfn, allknn, emst, gmm, kernel_pca, kmeans, lars, linear_regression, nbc,
+ * nca, pca, radical
+ *
+ * @section tutorial Tutorials
+ *
+ * A few short tutorials on how to use MLPACK are given below.
+ *
+ * - @ref build
+ * - @ref matrices
+ * - @ref iodoc
+ * - @ref timer
+ * - @ref sample
+ *
+ * @section methods Methods in MLPACK
+ *
+ * The following methods are included in MLPACK:
+ *
+ * - Euclidean Minimum Spanning Trees - mlpack::emst::DualTreeBoruvka
+ * - Gaussian Mixture Models (GMMs) - mlpack::gmm::GMM
+ * - Hidden Markov Models (HMMs) - mlpack::hmm::HMM
+ * - Kernel PCA - mlpack::kpca::KernelPCA
+ * - K-Means Clustering - mlpack::kmeans::KMeans
+ * - Least-Angle Regression (LARS/LASSO) - mlpack::regression::LARS
+ * - Naive Bayes Classifier - mlpack::naive_bayes::NaiveBayesClassifier
+ * - Neighborhood Components Analysis (NCA) - mlpack::nca::NCA
+ * - Principal Components Analysis (PCA) - mlpack::pca::PCA
+ * - RADICAL (ICA) - mlpack::radical::Radical
+ * - Simple Least-Squares Linear Regression -
+ * mlpack::regression::LinearRegression
+ * - Tree-based neighbor search (AllkNN, AllkFN) -
+ * mlpack::neighbor::NeighborSearch
+ * - Tree-based range search - mlpack::range::RangeSearch
+ *
* @section remarks Final Remarks
*
* This software was written in the FASTLab (http://www.fast-lab.org), which is
More information about the mlpack-svn
mailing list